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Abstract: A matrix formulation is presented to allow linear and first-order nonlinear regression analysis
with multidimensional model functions. Examples of pseudocodes are presented illustrating the
implementation of the formulation for numerical computation.

1. Introduction

Regression analysis is an important tool for the determination of the relationship
between variables from experimental data measured in physical, biological, statistical
and other phenomena. If a good model function is known to govern the experiment,

parameters can be inferred by fitting the model function to the data.

The formulation broadly available in the literature employs a summation
procedure that is generalized to a matrix method to derive the expressions that lead to
the final set of equations for the unknown parameters [1]. In this paper, one employs a
matrix formulation [2] directly to ease the development of structured algorithms. The
formulation is derived for both linear and first-order nonlinear regression analysis.
Examples are shown on how to determine the intermediate matrices that lead to the
solution of the problem for both the linear and nonlinear cases. A pseudocode is

presented for the development of simple nonlinear regression algorithms.

2. Statement of the Problem

Consider a real function f(f(,;l) modeling a physical quantity w, with

X':( X, Xy, .. Xy )T, (D

representing an independent variable, M-element, column matrix! and

1 In the present formulation matrices are represented as capital letters with an appended tilde symbol. The transpose of a matrix is
represented by adding the superscript T to the matrix. The m-th row is represented by appending the subscript m to the matrix , and
the n-th column, by appending the superscript <m>.
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A:( a a, .. q )T, (2)

a column matrix with L parameters that define the model function.

For instance, for the model function

f=a+bx+cy+dxy,
M=2 and L=4 and the matrices X and A are
~ T
X=(x v

A=(abcd)

T

In the following X will be referred to as the independent vector and f\, as the
parameter vector. In practice, the physical quantity w is measured on N distinct points

represented as a column matrix

W:( woW, . Wy )T. 3)

The problem in regression analysis is to determine the parameter vector A

yielding a function f that best describes the measured quantity w. One way to solve this

problem is to determine a solution A that minimizes the square error [1]. This

parameter, in matrix notation, can be written in the form

E=(W-F) (W-F), (4)

with
T
F:( f(f<l>,A) f(f<2>,A) f(Y<N>,A) j (5)
representing a column matrix in which the n-th element is the function fevaluated at the
point
X=y", (6)
with 7 representing the n-th column of the M x N matrix
Y :( FO e W ) 7)
Given that & is a positive definite function, if a local minimum exists, it can be

obtained by imposing the condition
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VE=0 (8)

T
- 3 9 d
Vz[a_al - E] (9)

representing the nabla operator, in the L-dimensional parameter space, and

with

0=(0 0 .. 0), (10)

the L-dimensional null vector.

Expression (8) represents a set of L-equations on the L unknown parameters. If f
is a good model function for the problem in general only minima will be obtained. The

best solution can then be chosen as that yielding the smallest value of § .

As detailed in the following sections, an exact solution can be obtained for the
case of model functions that are linear in the parameters. For nonlinear model functions

a numerical solution has to be obtained.

3. Linear Regression

A function that is linear in the elements of the parameter vector can be written in

the form
F(X.4)=[G¥] 4, (11)
with

=[5 (%) &(x) - (%)), (12)

being an L-element vector that defines the distinct functions associated to the L
elements of the parameter vectors. Superscript X is used to allow defining a more
general rectangular G matrix from which G would represent a given column,

associated with the independent vector X. This can be better understood by noticing

that (5) can be cast into the form

F=G"A, (13)



E. Fontana Matrix Formulation for Linear and First-Order Nonlinear Regression Analysis with Multidimensional Functions

with

G:( GOE Ew ) (14)

representing an L X N matrix with the n-th column being defined according to (12), i.e.,

6= o(7") &[7) . () ) (15)

For example, for the function
f= aexp(xy)+bcos(x+y)+csin(xyz)+d,

one has M=3, L =4 and one could define, according to (1), (2), (11) and (12),

~ T
(i )

g, (f() = sin(x1x2x3) ,
g(X)=1,
i.e.,

G<X>:( exp(x]xz) sin(xl+x2) sin(xxx) 1 )T,

172773

with x, =x, x, =y, x; =z.

To determine the solution to the parameter vector, the differential operation

given by (8) is first computed using (4) yielding

Ve =V (WW W' E - F'W + FF). (16)
Noticing that W is independent of the parameter vector, one obtains
(WTE+ FTW - FTF) =0 (17)

The I-th element of (17) is of the form
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a%( v+ FTW - FTF) =0,
or equivalently
oF | -
3 (W-F)=0 (18)
For the latter expression, the property
A'TB=B"A, (19)

was used.
Before proceeding, it is instructive to introduce the generalized derivative

operator, for a vector of K elements,
B . . _ T
= n Vo W ) (20)

Expression (27) represents a K X L matrix. According to this definition, setting H=F,

(18) can be grouped as set of L equations of the form
F"(W-F)=0, (21)
with
P (7)) (7OA) L S (PA) ) (22)
representing an L x N matrix and 0 the null vector of length L.

Notice that, by use of (13),

OF _ 5 9A
da, da, '
or equivalently
OF" 9A" -
= G, 23
da, da (23)

l 1
which can be generalized, by use of the definition (20) to the relation
FT=A"G. (24)

By applying the definition (22) to vector A, itis straightforward to show that

¥=3,, (25)

with E~3L representing the L X L identity matrix. From (24) and (25) one obtains

F" =G, (26)
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Inserting (26) into (21) yields From (13), (18) can be cast into the form
G(W-F)=0 (27)
By inserting (13) into (23) one obtains, after a few algebraic manipulations, the final
solution for the unknown parameter vector,
A=(GG") (6W) (28)

Notice that GG” is an L x L square matrix and GW is a vector of length L.

4. First-Order Nonlinear Regression

For a function that is nonlinear on the elements of the parameter vector, one can
obtain an approximate solution by making a first-order linear approximation for the
model vector. Small corrections are obtained by iteration. At the k-th iteration step, one

obtains a set of L linear equations for the correction to be made on the parameter vector.

In order to develop the procedure, let A(k)the parameter vector at the k-th iteration

step. Given this vector, one expands the model function, to first order in the form
F(X.A)=f[XA(k) [+ V' f| X A(k) |[A- A(K)]. (29)
Using the definition (5), (29) can be generalized to the form

F(A)=F(k)+F' (k)| A= A(k) | (30)
with

T
F' (k) E( VF(FUA(K) VF(PPLA®K) . VA(PY,A(K) ) (31)
representing the N x L generalized derivative matrix of the vector F, according to the
definition (20), as per (22). In (30) one uses the notation F(k)= ﬁ[;\(k)] :

In order to determine the correction to be obtained at each iteration step, one

considers the condition given by (21), re-written as
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~ 0~ Tr ~ ~( ~ ~
[F (A)} [W—F(A)}:o. (32)

Using (30) in the above equation and noticing that to first order

F'(A)=F(k),

yields

[F/ (k)] {W = F(k)- F (k) A- A(k) ]} =0, (33)

which after a few algebraic manipulations yields,

Mm={[F®] F®} {[Fw] [ -Fm]), (34)
with

A(k)=A4-A4(k), (35)

representing the differential correction in the parameter vector.

Expression (34) is calculated iteratively until differential correction becomes

smaller than a certain preset error parameter.

In the following section, examples on how to define the matrices for both the
linear and nonlinear cases are shown. A pseudocode is shown for the development of

algorithms for the case of nonlinear regression analysis of data.

5. Examples

5.1 Linear regression example

Consider once again the example of Section 3 with

f= aexp(xy)+bcos(x+y)+csin(xyz)+a’,
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one has M=3, L =4. Assume that N values are obtained for the quantity w, i.e.

~ T
W:( wooWw, e Wy ) (36)
From (7)
) N
Y= Vi Vo o Yy |- (37)
R N
From (12)
G<X>_ . . T
—( exp(xy) sm(x+y) sm(xyz) 1) (38)
and from (15),
exp(xlyl) exp(x2y2) exp(xNyN)
&= sin(x1+yl) sin(x2+y2) sin(xN+yN) (39)
sin(xlylzl) sin(xzyzzz) sin(xNyNzN)
1 1 1 1

One obtains a 4 X N G matrix and expressions (36) and (39) are sufficient to determine

the solution given by (28).

5.2 Nonlinear regression example

For the sake of simplicity, consider the 3-parameter gaussian model for a single

variable function
f(x,;l)=aexp{—[(x—f)/w]z}, (40)

where a is the amplitude, X is the centroid and w is the halfwidth of the gaussian. The

parameter vector is
~ T
A=(a x w) (41)
Assume once again that a set of N data points is obtained, represented by (36).

According to (34) all that is necessary is to determine the matrices F and F’. Assuming

that at the k-th iteration the parameter vector is given by
T
AW)=( alt) 7() wlr) |- (42)

From (5)
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Fo)=| Wenl-{x -] @)} | )

a(k)exp{—{[x]v:f(kﬂ / w(k)}z}

and from (31), one obtains, after a few algebraic manipulations

(44)

) X 1 B T 101 S

Together with (36), (43) and (44) are sufficient to determine the differential

correction for the parameter vector.

5.3 Pseudocode for nonlinear regression

Table I shows a pseudocode for the computational implementation of the
procedure, for the case of nonlinear regression analysis. As can be noticed from the
program structure, by use of the matrix formulation presented in this paper one can
organize the algorithm using a rather simple and modular scheme.
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Table I - Pseudocode for nonlinear regression analysis.

1. Initialization:
e Define model function

Read data and store into matrix W
Define parameter vector A

Set initial guess to the parameter vector:
Set a high value for an error parameter:
Define function

e Define system matrix function

e Define input vector function

e Set a maximum value for the change in magnitude of the parameter vector
2. Calculation:
while err > €

A
Remarks:
e Mathcad programming style is used as a model.

e The vectorize operation produces a matrix in which each

element is the absolute value of the difference between vectors
e The function max( ) calculates the maximum element of the vector.

e The last value of A stores the approximate solution to the parameter vector.
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