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Abstract: An elegant matrix form is presented for the generalized Newton-Raphson Method for N non-
linear equations, to enable simple implementation of the method in numerical computation.

To solve a set of N non-linear equations, a direct extension of the Newton-
Raphson[1] method is used. For a single variable, the method is based on the simple first

order expansion of a function u around a point x = X,

u(x, +5x)zu(xg)+u’(xg)5x, (1)
with dx representing a small increment of x,and
, _du
(e )= 2)

If one wants to determine a root of u and if X, is an initial guess for this root, to a

first approximation, the first correction dx can be obtained by setting the RHS of (1) to
zero, thus yielding

Ox = —[u'(xg)T1 u(x,). (3)

As the value of X, approaches a given root of u, the RHS of (3) becomes progressively

smaller, so does the correction dx The Newton-Raphson method comprises applying (3)
iteratively until a root is found within a given uncertainty €.

A form very similar to (3) can be obtained for the case of N non-linear equations
having N independent variables. In this case one employs the first order approximation
to a function of N variables, i.e.,

u()~(+6)~()zu()~()+(ﬁTu)6)~(, (4)
with

X:( X, Xy e Xy )T (5)

representing a column matrix! having the N variables as elements and

1 In the present formulation, matrices are represented by capital letters with an appended tilde symbol.
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T
- J d d

the column matrix form of the gradient operator. Superscript T in (5) and (6) denotes
the transpose operation on a matrix.

With the first-order Taylor expansion given in (4), one can easily extend the
result given in (3) by writing the set of N non-linear equations in the form

F=0, (7)

with F representing a column matrix with each element corresponding to a non-linear
function of the system, i.e.,

FR)=( £(8) 4(8) - n(D) ) ®

and with the column matrix 0 in (7) having N null elements.

At the k-th iteration one defines the following quantities

T
X(0)=( 0(k) x(6) - xy(®) ), 9)
with X; (k) representing the value of the i-th element of X at the k-th iteration,
Vu(k)=Vul___ .\, (10)

F(k)EF[X(k)} (11)
The generalized derivative of F can be defined in the form of an N x N matrix as

. . . T
F’E( Vi VLo Yy ) , (12)
or, by use of the Kronecker product [2], in the compact form

F'=V'®F, (13)
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with a corresponding value at the k-th iteration
F’(k)z( Vi(k) VA (k) . Vi (k) )T, (14)

or equivalently
F'(k)=V"®F(k). (15)

Assuming that an initial guess )?(0) is set to the matrix X, by use of (4) and (14),

it can be shown, after a few algebraic manipulations, and by extension of the result given
in (3), that the new matrix X (1) , at the first iteration, can be written approximately as

%(1)= %(0)-£(0) " £(0). (16)
or, according to (13),
(1)~ x(0)-[ 9" ® ()] #(0). (17)

This procedure is repeated iteratively and at the (k+1)-th iteration, one obtains

X(k+1)= X (k)- (k)" F (k). (18)
Alternatively, (18) can be written as

k1)~ X()-[ V" @ 7 ()] £ (k). (19)

The iterative procedure is stopped within a certain maximum uncertainty of the

elements of X . For example, defining the absolute difference matrix at the (k+1)-th
iteration as

A(k+1)s( A(k+1) Ay (k+1) o Ay (k+1) )T, (20)

with

A, (k+1) =], (k+1)-x, (k)] (21)

one can establish, for instance, that the iterative procedure should be interrupted when
the maximum variation of any element of X is¢, i.e.,
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max[ﬁ(k+1)]<e, (22)

with max|[.] representing the largest element of the matrix A(k + 1).

In implementing computational algorithms to solve a set of N non-linear
equations, basic definitions (5) and (8) are used to define functions and variables, and
(18) or (19) is used for the iterative calculation, with the interruption criterion (22).
Table I shows a pseudocode for the computational implementation of the procedure. As
can be noticed from the program structure, by use of the matrix formulation presented
in this paper one can organize the algorithm using a rather simple and modular scheme.

Table I - Pseudocode to solve a set of N non-linear equations.

1. Initialization:
e Define matrix F(X) all at once. In this instance, X is defined along the definition of F.

e Calculate F’(X) . To improve speed, derivatives can be calculated numerically.

e Setinitial guess Y,
e Seta small positive value to the uncertainty parameter ¢

err <100 (seta high value to the error parameter)
2. Calculation:
Root « while err > €

Yold«Y

Yev —[F’(Y)T F(Y)

err < max(|Y - Yold|)
Y

3. Remarks:
e Mathcad programming is used as a model.
e Parameters ¥, F(X), F’(X),Yold, Y and Root are matrices.

e Parameters err and € are scalars.
e The vectorize operation |y - y01d| produces a matrix in which each element is the absolute value

of the difference between corresponding elements of ¥ and Yold .
e The function max( ) calculates the maximum element of the matrix |y — y01d| .

e Thelastvalue of Y stores the solution of the set of N non-linear equations.

References

[1] G. B. Arfken and H. J. Weber, “Mathematical Methods for Physicists,” 5%. ed., San
Diego, CA, Academic Press, pp. 1085-1086 (2001).

[2] Wikipedia contributors, "Kronecker product,” Wikipedia, The Free Encyclopedia,
Accessed February 6, 2013.



