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Abstract

The class of beta autoregressive moving average (βARMA) models is useful for mod-
eling time series data that assume values in the standard unit interval, such as rates and pro-
portions. This thesis is composed of two main and independent chapters. In the first part, we
consider portmanteau testing inference in the class of βARMA models. To that end, we use
tests that have been developed for Gaussian models, such as the Ljung and Box, Monti, Dufour
and Roy, Kwan and Sim, and Lin and McLeod tests. We also consider bootstrap variants of the
Ljung and Box, Monti, Dufour and Roy, and Kwan and Sim tests. Moreover, we propose two
new test statistics which, like the Monti statistic, are based on residual partial autocorrelations.
Additionally, we present and discuss results from Monte Carlo simulations and an empirical
application. The second part of the thesis focuses on the recursive nature of βARMA log-
likelihood derivatives under moving average dynamics. We provide closed form expressions
for the relevant derivatives by considering errors in the predictor scale.

Keywords: Bootstrap. βARMA. Model diagnostic. Monte Carlo simulation. Portmanteau
test. Residual analysis.



Resumo

A classe de modelos beta autorregressivos de médias móveis (βARMA) é útil para mod-
elar dados que assumem valores no intervalo unitário padrão, como taxas e proporções. A pre-
sente dissertação tem como tema tal classe de models e é composta por dois capítulos principais
e independentes. Na primeira parte, consideramos inferências baseadas em testes portmanteau
na classe de modelos βARMA. Para tanto, utilizamos testes que foram desenvolvidos para
modelos gaussianos, como os testes de Ljung e Box, Monti, Dufour e Roy, Kwan e Sim, e
Lin e McLeod. Também consideramos variantes bootstrap dos testes de Ljung e Box, Monti,
Dufour e Roy and Kwan e Sim. Adicionalmente, propomos duas novas estatísticas de testes
que, tal qual a estatística de Monti, são baseadas em autocorrelações parciais dos resíduos. Ap-
resentamos e discutimos resultados de simulações de Monte Carlo e uma aplicação empírica.
A segunda parte da dissertação aborda a natureza recursiva das derivadas da função de log-
verossimilhança βARMA sob dinâmica de médias móveis. Nós fornecemos expressões em
forma fechada para as derivadas relevantes considerando erros na escala do preditor.

Palavras-chave: Análise de resíduos. Bootstrap. βARMA. Diagnóstico. Simulação de
Monte Carlo. Teste portmanteau.
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CHAPTER 1

Preliminaries

In this chapter we present a brief outline of the dissertation, which is composed of two main
and independent chapters. The subject of the dissertation is portmanteau testing inference in
the class of beta autoregressive moving average models proposed by Rocha and Cribari-Neto
(2009). Since the seminal work of Box and Pierce (1970), many different portmanteau tests
have been proposed in the literature for different time series data that assume values in the
real line. We evaluate the accuracy of testing inferences based on such criteria when the time
series data assume values in the standard unit interval, (0,1), and are modeled using a beta
autorregressive moving average model. We also propose two new portmanteau test statistics.

In Chapter 2 we address the issue of performing portmanteau testing inference using time
series data that assume values in the standard unit interval. Our focus lies in the class of
beta autoregressive moving average (βARMA) models. We consider different portmanteau
goodness of fit tests such as Ljung and Box (1978), Monti (1994), Dufour and Roy (1986),
Kwan and Sim (1996a,b) e Lin and McLeod (2006). The numerical evidence we provide show
that the bootstrap test proposed in Lin and McLeod (2006). We also consider bootstrap va
deliveres accurate inferences in small sample sizes when used with βARMA models. We
consider bootstrap variants of the tests introduced by Ljung and Box (1978), Monti (1994),
Dufour and Roy (1986) and Kwan and Sim (1996a,b). Moreover, we propose two new test
statistics which, like the statistic introduced by Monti (1994), are based on residual partial
autocorrelations. The simulation results we present show that the new tests can be powerful
than that of Monti (1994). We also present and discuss the results of an empirical application.

Chapter 3 is devoted to the recursive nature of βARMA log-likelihood derivatives under
moving averages dynamics. Closed form expressions for the relevant derivatives are provided
by considering errors in the predictor scale.

The notation and terminology used is consistent throughout the thesis. The programming
routines for Monte Carlo simulations and all figures in this thesis were developed for the R
statistical computing environment (R Core Team, 2017).

13



CHAPTER 2

Portmanteau testing inference in beta
autoregressive moving average models

2.1 Introduction

The beta autoregressive moving average (βARMA) model (Rocha and Cribari-Neto, 2009)
is a dynamic model based on the class of beta regression models (Ferrari and Cribari-Neto,
2004). In the βARMA model the variable of interest (y) is assumed to follow the beta law,
its mean being impacted by a set of covariates and also subject to autoregressive and moving
average dynamics. The model was developed to be used with time series that assume values
in standard unit interval (0,1), such as rates and proportions. Such variables are typically
asymmetrically distributed and inferences based on the Gaussian assumption may be quite
inaccurate. Additionally, a novel feature of the βARMA model is that it requires no data
transformation; fitted values and out-of-sample forecasts will always belong to the standard
unit interval.

Diagnostic analyses are of paramount importance in time series modeling. They are per-
formed after the model has been identified and fitted. Different model validation strategies can
be used. Perhaps the most commonly used validation strategy involves portmanteau testing in-
ference (Wei, 1994). Such tests are based on statistics that use residual autocorrelations. They
seek to detect any existing serial correlation in the residuals obtained from the fitted model.

Since the seminal article by Box and Pierce (1970), which introduced the first portman-
teau test, considerable attention has been devoted to tests that use residual autocorrelations to
assess goodness of fit. Goodness of fit assessment should not only determine whether there
is evidence of lack of fit, but should also suggest ways in which the model may be modified
when that proves necessary (Box and Pierce, 1970). Ljung and Box (1978) showed that a sim-
ple modification to the test statistic proposed by Box and Pierce (1970) considerably reduces
the distribution location bias and improves the quality of the asymptotic approximation used
in the test. Monti (1994) proposed to base portmanteau testing inference on a test statistic
that uses residual partial autocorrelations rather than residual autocorrelations. The Ljung and
Box and Monti tests are asymptotically equivalent under correct model specification, but their
performances under the alternative hypothesis can be substantially different in small samples.
Dufour and Roy (1986) introduced a non-parametric portmanteau test based on rank autocor-
relations. Their test is particularly useful when the underlying distribution of the time series is
unknown and tends to deliver accurate inferences under non-normality. Dufour and Roy (1986)
noted that the distribution of their statistic is the same for all samples whenever the observa-
tions are continuous and exchangeable, irrespective of the distributional form. Kwan and Sim

14



2.2 THE βARMA MODEL 15

(1996a) proposed three modified portmanteau test statistics that make use of the Fisher (1921)
and Hotelling (1953) transformations to sample autocorrelations. Kwan and Sim (1996b) in-
troduced a test statistic that uses the Jenkins (1954) variance-stabilizing transformation applied
to residual autocorrelations. The simulations evidence presented by Kwan and Sim (1996a,b)
showed that these tests they proposed typically deliver more accurate inferences than those of
tests introduced by Ljung and Box (1978) and Dufour and Roy (1986). Peña and Rodriguez
(2002) introduced a test based on the determinant of the residual autocorrelation matrix. They
approximated the test statistic null distribution using the gamma distribution. Such an approx-
imation can be poor in some situations. To circumvent such a shortcoming, Lin and McLeod
(2006) proposed using bootstrap resampling to estimate the test statistic null distribution.

All portmanteau tests listed above were developed for standard ARMA models, i.e., for
models used with variables that assume values in the real line. How do such tests perform when
used with βARMA models? To the best of our knowledge, this question remains unanswered.
Our chief goal in this dissertation is to investigate the accuracy of portmanteau testing inference
in the class of βARMA models. We also consider bootstrap variants of the tests. Additionally,
we introduce two new portmanteau test statistics which are obtained by modifying two test
statistics proposed by Kwan and Sim (1996a,b) to use residual partial autocorrelations instead
of ordinary residual autocorrelations. The simulation results we present show that such tests
are typically more powerful than the other tests considered in this thesis.

We present an empirical application where we use portmanteau testing inference with a
fitted βARMA model. The interest lies in modeling the proportion of stocked hydroelectric en-
ergy in the South of Brazil. The data range from January 2001 through October 2016. We pro-
duce out-of-sample forecasts using both the βARMA model and the standard ARMA model.
It is shown that the former yields more accurate short term forecasts. Prior to using the fitted
βARMA model for forecasting we validate it on the basis of portmanteau testing inference. We
shall return to this application in Section 2.5.

This chapter unfolds as follows. Section 2.2 presents the βARMA model and its main
properties. In Section 2.3 we review some portmanteau tests for model adequacy that have
been used in the literature and propose two new tests. Monte Carlo simulation evidence is
presented in Section 2.4. An empirical application is presented and discussed in Section 2.5.
Finally, Section 2.6 contains some concluding remarks.

2.2 The βARMA model

Let y = (y1, . . . ,yn)
> be a vector containing n random variables, where each yt , for t = 1, . . . ,n,

given the previous information set Ft−1, where Ft is an increasing sequence of σ -fields, i.e.,
F0 ⊂F1 ⊂F2. . . , follows the beta law with conditional mean µt and precision parameter φ .
The conditional density of yt given Ft−1 is

f (yt |Ft−1) =
Γ(φ)

Γ(µtφ)Γ((1−µt)φ)
yµtφ−1

t (1− yt)
(1−µt)φ−1, 0 < yt < 1, (2.1)
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0 < µt < 1 and φ > 0, where Γ(·) is the gamma function. The conditional mean and the
conditional variance of the yt are, respectively,

IE(yt |Ft−1) = µt and var(yt |Ft−1) =V (µt)/(1+φ),

where V (µt) = µt(1− µt) is the variance function. Note that µt is the mean of yt and φ is a
precision parameter, in the sense that for a fixed µt the variance of yt decreases as φ increases.

By assuming that the variable of interest follows the above beta law, Rocha and Cribari-
Neto (2009) proposed the following βARMA(p,q) model:

g(µt) = α + x′tβ +
p

∑
i=1

ϕi
{

g(yt−i)− x′t−iβ
}
+

q

∑
j=1

θ jrt− j,

where g : (0,1)→ IR is a link function which is strictly monotonic and twice differentiable.
Here, α ∈ IR is a scalar parameter and p, q∈ IN are, respectively, the autoregressive and moving
average orders. Additionally, rt is the moving average error term and the ϕ’s and the θ ’s are the
autoregressive and moving average parameters, respectively. There are different specifications
for rt , e.g., (i) error on the original scale: yt−µt , and (ii) error on the predictor scale: g(yt)−ηt .
In what follows, we shall consider the latter.

The estimation of the parameters that index the βARMA model is typically performed by
conditional maximum likelihood (Andersen, 1970). The conditional log-likelihood function
(given the first K observations) is

`=
n

∑
t=K+1

log f (yt |Ft−1) =
n

∑
t=K+1

`t(µt ,φ),

where K = max{p,q} and f (yt |Ft−1) is given in Equation (2.1).
The conditional maximum likelihood estimators of the model parameters cannot be ex-

pressed in closed form. They are typically computed by numerically maximizing the condi-
tional log-likelihood function. In what follows we shall perform log-likelihood maximizations
using the BFGS quasi-Newton nonlinear optimization algorithm; for details, see Press et al.
(1992). When the model contains moving average components, it is necessary to take into
account the recursive structure of log-likelihood derivatives (Benjamin et al., 1998). With pre-
dictor scale error, such derivatives are given by Rocha and Cribari-Neto (2017):

∂ηt

∂α
= 1−

q

∑
j=1

θ j
∂ηt− j

∂α
,

∂ηt

∂βl
= x′t−

p

∑
i=1

ϕix′t−i−
q

∑
j=1

θ j
∂ηt− j

∂β
,

∂ηt

∂ϕi
= g(yt−i)− x′t−iβ −

q

∑
j=1

θ j
∂ηt− j

∂ϕi
, i = 1, . . . , p,
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∂ηt

∂θl
= g(yt−l)−ηt−l−

q

∑
j=1

θ j
∂ηt− j

∂θl
, l = 1, . . . ,q.

Starting values for ηt can be obtained by setting ηt = g(yt) and the derivatives of η with respect
to the model parameters equal to zero for t = 1, . . . ,q (Benjamin et al., 1998).

The model residuals measure the distance between the observed responses and the fitted
conditional means. In what follows we shall use the standardized ordinary residual defined by
(Ferrari and Cribari-Neto, 2004)

r̂t =
yt− µ̂t√
v̂ar(yt)

,

where v̂ar(yt) = µ̂t(1− µ̂t)/(1+ φ̂). Here, µ̂t is obtained by evaluating µt at the maximum
likelihood estimates and φ̂ is the maximum likelihood estimate of φ .

2.3 Portmanteau Tests

Portmanteau tests are commonly used in time series analysis to assess goodness of fit (Wei,
1994). Portmanteau test statistics are based on residual autocorrelations and the fitted model
is taken as a good representation of the data when such autocorrelations are jointly negligible.
According to Box et al. (2015), time series model building consists of three separate stages,
namely: identification, estimation and validation. Portmanteau tests focus on the latter. Box
and Pierce (1970) argue that model adequacy assessment should not only determine whether
there is evidence of lack of fit, but also indicate ways in which the fitted model may be modified
when that proves necessary.

The null and alternative hypotheses are

H0 : ρ1 = ρ2 = · · ·= ρm = 0
H1 : at least one ρi 6= 0.

Rejection of the null hypothesis indicates that there is evidence of model misspecification.
In what follows we shall briefly present some well known portmanteau tests (Subsec-

tion 2.3.1) and then propose two new tests (Subsection 2.3.2).

2.3.1 Standard portmanteau tests

The kth order residual (sample) autocorrelation is given by

ρ̂k =

n

∑
t=k+1

r̂t r̂t−k

n

∑
t=1

r̂2
t

, k = 1, . . . ,m,

where r̂t is the tth residual. When the model is correctly specified r̂t is expected to be nearly
uncorrelated.
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Box and Pierce (1970) showed that when the model is correctly specified

var(ρ̂k) =
n− k

n(n+2)
≈ 1

n

and Cov(ρ̂k, ρ̂h)≈ 0 for (k 6= h). We carried out extensive numerical evaluations using different
values of n and m, and their results indicate that such a also holds for βARMA models.

The authors then proposed the following portmanteau test statistic:

QBP = n
m

∑
k=1

ρ̂
2
k .

Box and Pierce (1970) proved that the asymptotic null distribution of their test statistic is
χ2

m−p−q (for m > p− q). The result follows from the asymptotic normality of the residual
autocorrelations, which hold for a wide range of stochastic processes. Numerical evidence not
presented here for brevity indicates that this is the case for time indexed beta-distributed random
variables. The alternative test statistics considered in this thesis (see below) are asymptotically
equivalent to that of Box and Pierce.

Ljung and Box (1978) showed that QBP suffers from a location bias of the null distribution
of the test statistic, which happens even when the sample size is large (n > 100) (Dufour and
Roy, 1986). Ljung and Box (1978) then proposed the following test statistic:

QLB = n(n+2)
m

∑
k=1

ρ̂2
k

(n− k)
.

The authors showed that the null distribution of QLB is better approximated by the χ2
m−p−q

reference distribution than that of the Box and Pierce (1970) test statistic.
Monti (1994) proposed a portmanteau test statistic based on the sum of the square residual

partial autocorrelations. Let π̂k be the kth residual partial autocorrelation. The Monti test
statistic can be written as

QM = n(n+2)
m

∑
k=1

π̂2
k

(n− k)
.

It is also asymptotically distributed as χ2
m−p−q under the null hypothesis. Notice that the Monti

test statistics is obtained by replacing residual autocorrelations with residual partial autocorrela-
tions in the Ljung-Box test statistic. The test is particularly sensitive to model misspecification
that involves the omission of moving average terms (Monti, 1994). Under the null hypothe-
sis, QM and QLB are asymptotically equivalent, but their performances under the alternative
hypothesis can be quite different. The Monte Carlo simulation evidence presented by Monti
(1994) shows that the QM and QLB tests behave similarly when the null hypothesis is true and
that the QM test tends to be more powerful than the QLB test when the fitted model fails to
include important moving average terms.

Dufour and Roy (1986) introduced a non-parametric portmanteau test based on rank auto-
correlations. Let Rt be the rank of r̂t . The kth residual rank autocorrelation is

ρ̃k =
∑

n−k
t=1 (Rt− R̄)(Rt+k− R̄)

∑
n
t=1(Rt− R̄)2 , 1≤ k ≤ n−1,
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where R̄ = n−1
∑

n
t=1 Rt = (n+1)/2 and ∑

n
t=1(R− R̄)2 = n(n2−1)/12 if all ranks are distinct.

Since R1, . . . ,Rn are interchangeable when r1, . . . ,rn are interchangeable and continuous, the
mean of ρ̃k is

IE(ρ̃k) = µk =−
(n− k)

n(n−1)
, 1≤ k ≤ n−1.

It is possible to show that

var(ρ̃k) = σ̃
2
k =

5n4− (5k+9)n3 +9(k−2)n2 +2k(5k+8)n+16k2

5(n−1)2n2(n+1)
, 1≤ k ≤ n−1.

Dufour and Roy (1986) proposed the following portmanteau test statistic:

QDR2 =
m

∑
k=1

(ρ̃k−µk)
2

σ̃2
k

,

where ρ̃ = (ρ̃1, . . . , ρ̃m)
>. Under the null hypothesis, QDR2 is asymptotically distributed as

χ2
m−p−q.

Kwan and Sim (1996a) considered the situation where a portmanteau test is applied to a
time series, and not to residuals from a fitted model. They showed that it is possible to reduce
the dispersion bias of QLB by applying a variance-stabilizing transformation to the autocorrela-
tions such as those introduced by Fisher (1921) and Hotelling (1953). Fisher (1921) proposed
transforming of ρ̂k as

z1k =
1
2

log
{
(1+ ρ̂k)

(1− ρ̂k)

}
, k = 1, . . . ,m,

whereas the two Hotelling (1953) transformations are

z2k = z1k−
1
4
(3z1k + ρ̂k)

(n− k)
,

z3k = z2k−
(23z1k +33ρ̂k−5ρ̂3

k )

96(n− k)2 ,

where zik, for i = 1,2,3,4, are normally distributed with IE(zik)≈ 0, var(z1k)≈ (n− k−3)−1,
var(z2k)≈ (n−k−1)−1 and var(z3k)≈ (n−k−1)−1. Using these approximations, the authors
proposed three modified portmanteau test statistics:

QKWi =
m

∑
k=1

(n− k− τi)z2
ik, i = 1,2,3,

where τ1 = 3 and τ2 = τ3 = 1. Under the null hypothesis, all three statistics are asymptotically
distributed as χ2

m. (The number of degrees of freedom is m because the test is, as noted above,
applied to a time series, and not to residuals from a fitted model.) The Monte Carlo evidence
in Kwan and Sim (1996a) indicates that the dispersion bias of the null distribution of QLB is
considerably reduced when a variance-stabilizing transformation is used.
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Kwan and Sim (1996b) introduced a fourth test statistic based on a variance-stabilizing
transformation proposed by Jenkins (1954). The transformation is given by

z4k = sin−1(ρ̂k),

where IE(z4k)≈ 0 and var(z4k)≈ ((n− k)−2(n− k−1)). The new portmanteau test statistic is

QKW4 =
m

∑
k=1

(n− k)2

(n− k−1)
z2

4k.

Under the null hypothesis, it is asymptotically distributed as χ2
m. Simulation results reported by

Kwan and Sim (1996b) show that the dispersion bias of QLB can be considerably reduced by
applying the transformation suggested by Jenkins (1954).

When the sample size is large relative to m, it can be show that (Kwan and Sim, 1996a,b)

IE(QKW1)' IE(QKW2)' IE(QKW3)' m− m(m+4)
n

, (2.2)

IE(QKW4)' m− m(m+1)
n

. (2.3)

Kwan and Sim (1996a) noticed that (2.2) and (2.3) suggest that, for a fixed n, the means
of QKW1, QKW2, QKW3 and QKW4 are smaller than m. Additionally, IE(QKW1), IE(QKW2),
IE(QKW3) and IE(QKW4) are not integers. The authors then proposed to modify the tests criti-
cal values using

IE(QKWi) =
m

∑
k=1

(n− k− τi)

{
IE(ρ̂2

k )+
2
3

IE(ρ̂4
k )

}
, (i = 1,2,3), (2.4)

IE(QKW4) =
m

∑
k=1

(n− k)2

(n− k−1)

{
IE(ρ̂2

k )+
1
3

IE(ρ̂4
k )

}
. (2.5)

Expressions for IE(ρ̂2
k ) and IE(ρ̂4

k ) in Equations (2.4) and (2.5) are given in Davies et al. (1977)
and Ljung and Box (1978).

According to Kwan and Sim (1996a,b), the tests can be performed as follows:

1. Compute the first m residual autocorrelations: ρ̂k(k = 1, . . . ,m).

2. Compute z1k, z2k, z3k and z4k.

3. Compute IE(QKW1), IE(QKW2), IE(QKW3) and IE(QKW4) using (2.4) and (2.5).

4. Reject the null hypothesis at the γ × 100% significance level if QKW1 ≥ χ2
1−γIE(QKW1)

,
QKW2 ≥ χ2

1−γ,IE(QKW2)
, QKW3 ≥ χ2

1−γ,IE(QKW3)
or QKW4 ≥ χ2

1−γ,IE(QKW4)
.
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As noted above, Kwan and Sim (1996a,b) focused on testing whether a given time series
behaves as white noise. In contrast, our interest lies in applying portmanteau tests to residuals
from a fitted model. It is thus necessary to take into account the loss in degrees of freedom that
follows from model fitting. We thus reject the null hypothesis if

QKWi ≥ χ
2
1−γ,IE(QKWi)−p−q, i = 1,2,3,4.

Notice the the critical value is now obtained from χ2
IE(QKWi)−p−q instead of χ2

IE(QKWi)
.

Peña and Rodriguez (2002) proposed a different portmanteau test statistic which is based
on the determinant of the residual autocorrelation matrix, being given by

D̂m = n
(

1−
∣∣R̂m
∣∣1/m

)
,

where

R̂m =


1 ρ̂1 · · · ρ̂m
ρ̂1 1 · · · ρ̂m−1
... · · · . . . ...

ρ̂m · · · ρ̂1 1

 .

Peña and Rodriguez (2002) noted that |R̂m| is the estimated generalized variance of the stan-
dardized residuals. The authors proposed approximating the asymptotic null distribution of D̂m
by the gamma distribution with shape parameter

λ =
3(m+1)[m−2(p+q)]2

2[2m(2m+1)−12(m+1)(p+q)]
,

and scale parameter

r =
3(m+1)[m−2(p+q)]

2m(2m+1)−12(m+1)(p+q)
.

When m is small, however, it is possible to obtain λ ≤ 0 and/or r ≤ 0 which is numerically
unfeasible. A modified test statistic was the proposed by the authors:

Dm = n
(

1−|R̈m|1/m
)
,

where R̈m denotes the residual autocorrelation matrix obtained by replacing ρ̂2
k with ρ̈2

k , where
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ρ̈
2
k = (n+2)(n− k)−1

ρ̂
2
k .

They showed that the gamma approximation may not work well when the number of lags is
small even for the modified test statistic. McLeod and Jimenez (1984) noted a serious short-
coming of Dm: R̈m is not always positive definite.

Lin and McLeod (2006) proposed using bootstrap resampling when performing the Peña
and Rodriguez (2002) test; for details on the bootstrap method, see Davison and Hinkley
(1997). Such a test can be adapted for βARMA models as follows:

1. Fit the βARMA(p,q) model and compute D̂m.

2. Select the number of bootstrap replications, B. (Typically, 100≤ B≤ 1,000.)

3. Simulate an βARMA(p,q) series after replacing the model’s parameters by their corre-
sponding estimates, fit the model using the simulated time series and compute D̂∗m.

4. Execute Step 3 B times and count the number of times k such that D̂∗m ≥ D̂m.

5. Compute the bootstrap p-value: (k+1)/(B+1).

6. Reject the null hypothesis if the bootstrap p-value is smaller than γ , the selected signifi-
cance level.

We adapted all the portmanteau tests described above for the βARMA model. In the next
subsection we shall propose two new portmanteau tests.

2.3.2 New portmanteau tests

We shall now propose two new portmanteau test statistics. Since they are based on two of
the test statistics introduced by Kwan and Sim (1996a,b) we shall denote them by QKW1p and
QKW4p.

As before, let π̂k denote the kth residual partial autocorrelation. We shall explore the use
of variance-stabilizing transformations applied to residual partial autocorrelations much in the
same way Kwan and Sim (1996a,b) did it with standard residual autocorrelations. We shall
them use such transformed partial autocorrelations to construct portmanteau test statistics much
in the same way Monti (1994) did it with standard partial autocorrelations. At the outset, we
consider the transformation introduced by Fisher (1921):

ẑ1k =
1
2

log
{
(1+ π̂k)

(1− π̂k)

}
, k = 1, . . . ,m.

The corresponding modified test statistic can be written as

QKW1p =
m

∑
k=1

(n− k− τ1)ẑ2
1k,
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where τ1 = 3. Under the null hypothesis, QKW1p is asymptotically distributed as χ2
m−p−q.

The second test statistic we propose makes use of the transformation introduced by Jenkins
(1954), namely:

ẑ4k = sin−1(π̂k).

Using it, we arrive at the following portmanteau test statistic:

QKW4p =
m

∑
k=1

(n− k)2

(n− k−1)
ẑ2

4k.

Under the null hypothesis, QKW4p follows the χ2
m−p−q distribution asymptotically.

Following Kwan and Sim (1996a,b), we suggest that the test critical values be corrected us-
ing the approach outlined in the previous subsection. The numerical evidence we shall present
in the next section shows that QKW1p and QKW4p are more powerful than the test proposed by
Monti (1994) in βARMA models. Recall that the latter also uses partial autocorrelations.

The finite sample performances of the two tests presented above can be improved with the
aid of bootstrap resampling. A similar approach can be used to other portmanteau tests. In
what follows we shall use the bootstrap method to improve the finite sample performances of
the following tests: QLBb, QMb, QDRb, QKW1b, QKW2b, QKW3b, QKW4b, QKW1pb and QKW4pb.
The bootstrap tests can be performed as follows:

1. Fit the βARMA(p,q) model and compute the test statistic of interest, Q.

2. Select the number of bootstrap replications, B. (Typically, 100≤ B≤ 1,000.)

3. Simulate an βARMA(p,q) series after replacing the model’s parameters by the corre-
sponding estimates, fit the model using the simulated time series and compute Q∗.

4. Execute Step 3 B times and count the number of times k such that Q∗ ≥ Q.

5. Compute the bootstrap p-value: (k+1)/(B+1).

6. Reject the null hypothesis if the bootstrap p-value is smaller than γ , the test significance
level.

2.4 Numerical evidence

Several simulation experiments were carried out to investigate the finite sample performances
of the different portmanteau tests in the class of βARMA models. All simulations were per-
formed using the R statistical computing environment (R Core Team, 2017). In the first set
of simulations we examine the tests null rejection rates without resorting to bootstrap resam-
pling. We consider the tests proposed by Ljung and Box (1978), Monti (1994), Dufour and
Roy (1986), Kwan and Sim (1996a,b) and also the two portmanteau tests introduced in Sub-
section 2.3.2. All tests were performed at the 10%, 5% and 1% significance levels. In or-
der to save space, however, we shall only present results for γ = 5%. The sample sizes are



2.4 NUMERICAL EVIDENCE 24

n = 50,250,500, the values of m we used are m = 5,10,15,20,25 and the number of Monte
Carlo replications is 5,000. All log-likelihood maximizations were performed using the BFGS
quasi-Newton method with analytic first derivatives. Starting values for the parameters were
selected as follows: (i) all moving average parameters were set equal to zero, and (ii) the va-
lues for the autoregressive parameters were selected by regressing g(yt) on g(yt−1), . . . ,g(yt−p)
using ordinary least squares. There were no convergence failures. Beta random number gen-
eration was performed based on uniform random generation that used the Mersenne Twister
algorithm. The hardware used was a cluster of computers with 64 blades of processing, 15.97
Tflops and 174TB RAM running on Linux and also a personal computer with an Intel i7 pro-
cessor and 16GB RAM running the Linux operating system. The computing cluster we used
belongs to the National Supercomputing Center at Federal University of Rio Grande do Sul
(CESUP/UFRGS).

In the first part of the experiment we generate data from the βAR(1) model with the fol-
lowing values for the autoregressive parameter: ϕ = 0.2,0.5,0.8. The tests null rejection rates
(%) are presented in Table 2.2. They reveal that the finite sample performances of the QLB,
QM, QDR, QKW1p and QKW4p tests are highly sensitive to the choice of m in small samples.
When the value of m is large relative to the sample size (e.g., n = 50 and m = 25) QLB and QDR
are considerably liberal whereas QKW1p and QKW4p are conservative. When ϕ = 0.8, n = 50
and m = 25, the QLB and QDR null rejection reach 8.0% and 7.9%, respectively. This behav-
ior had already been noted by Kwan et al. (2005) using normally distributed data. Even for
n = 50, the QM null rejection rate decreases when m goes from 20 (4.4%) to 25 (2.8%). Kwan
and Wu (1997) had noticed that the size of QM decreases whenever the value of m exceeds
14 and ϕ ≥ 0.7, i.e., QM tends to reject the null hypothesis less frequently. Additionally, the
null rejection rates of QKW1p and QKW4p decrease with m. Such tests become considerably
undersized when m is large relative to n. It is noteworthy that tests whose statistics use partial
autocorrelations (QM, QKW1p and QKW4p) behave similarly. The tests proposed by Kwan and
Sim (1996a,b) (QKW1, QKW2, QKW3, and QKW4) display good control of the type I error proba-
bility even when m is large relative to n. All tests perform well when n = 250 and n = 500. For
instance, when n = 250 and m = 15, the tests null rejection rates range from 5.1% to 5.8%.

In order to compare the performances of the different tests for each sample (n= 50,250,500),
we defined a measure which we call ‘mean size distortion’: MSD = s−1

∑
s
i=1 |nrri− γ|, where

nrri is the test null rejection rate for the ith value of m. Since we use five different values for
m, it follows that s = 5. Table 2.1 presents the MSD values for the tests considered in this
dissertation. We note that, the QKW4 test proposed by Kwan and Sim (1996b) displays the
smallest MSD for all sample sizes when the data generating process is βAR(1). It is thus the
most accurate as far as size distortions are concerned in the βAR(1) model. The test proposed
by Ljung and Box (1978) is the worst performer.

In Figure 2.1 we plot the tests null rejection rates against m for two samples sizes (n =
50,500) and five test statistics (QLB, QM, QDR, QKW4 and QKW4p). Notice that when n is small
(left panel), the null behavior of the QLB, QM, QDR tests are sensitive to the choice of m. In
contrast, the null behavior of QKW4 is nearly insensitive to the value of m used in the test. When
the sample is large (right panel) all tests behave similarly.

Table 2.3 contains the tests null rejection rates (%) for the βMA(1) model with moving
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Table 2.1 Mean size distortion rates of portmanteau tests without bootstrap resampling, γ = 5%.
Test

βAR(1) βMA(1) βARMA(1,1),ϕ = 0.2 βARMA(1,1),ϕ = 0.5 βARMA(1,1),ϕ = 0.8
n = 50 n = 250 n = 500 n = 50 n = 250 n = 500 n = 50 n = 250 n = 500 n = 50 n = 250 n = 500 n = 50 n = 250 n = 500

QLB 1.61 0.59 0.35 1.18 0.51 0.27 0.81 0.35 0.27 0.61 0.22 0.27 0.97 0.33 0.53
QM 0.80 0.31 0.33 0.83 0.39 0.23 1.28 0.26 0.28 0.99 0.25 0.29 1.27 0.32 0.60
QDR 1.39 0.61 0.36 1.07 0.55 0.37 0.81 0.42 0.35 0.71 0.39 0.46 1.00 0.50 0.65
QKW1 0.38 0.31 0.29 0.86 0.23 0.25 1.03 0.39 0.34 1.30 0.33 0.25 1.04 0.29 0.56
QKW2 0.38 0.31 0.29 0.85 0.23 0.25 1.03 0.39 0.34 1.30 0.33 0.25 1.04 0.29 0.56
QKW3 0.38 0.31 0.29 0.85 0.23 0.25 1.03 0.39 0.34 1.30 0.33 0.25 1.04 0.29 0.56
QKW4 0.30 0.30 0.28 0.77 0.23 0.24 0.91 0.41 0.35 1.30 0.33 0.26 0.98 0.28 0.54
QKW1p 1.57 0.32 0.29 1.67 0.42 0.33 1.67 0.43 0.25 1.89 0.33 0.37 1.95 0.53 0.90
QKW4p 1.53 0.31 0.34 1.73 0.40 0.33 1.57 0.23 0.23 1.83 0.31 0.37 1.93 0.53 0.90
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Figure 2.1 Null rejection rates of QLB, QM, QDR, QKW4, QKW4p, βAR(1) with ϕ = 0.2.

average parameter θ = 0.2,0.5,0.8. They show again that the size distortions of QLB, QM,
QDR, QKW1p and QKW4p are affected by the choice of m. The QLB test is the worst performer
when θ = 0.8, n = 50 and m is large relative to n (m = 20,25). Again, when the sample is
small (n = 50), the null rejection rates of QM decrease as m increases. The QKW1p and QKW4p
tests display the largest MSD in small samples. Overall, the tests introduced by Kwan and Sim
(1996a,b) are the best performers. When n = 250 and n = 500 all tests display reasonably good
control of the type I error probability and behave similarly.

Table 2.4 presents results obtained using the βARMA(1,1) data generating process with
ϕ = 0.2 and θ = 0.2,0.5,0.8. Similarly to the previously results, all portmanteau tests yield
reliable testing inferences when n = 250 or n = 500. When the sample size is small (n = 50)
and m = 5, the tests performances are impacted by the moving average dynamics. In particular,
QKW1p becomes considerably liberal, its null rejection reaching 9.1% when θ = 0.8. The QDR
test performs well when θ = 0.2 and θ = 0.5, being, however, a bit oversized when θ = 0.8.

Table 2.5 shows the tests null rejection rates for the βARMA(1,1) model with autoregres-
sive parameter ϕ = 0.5 and θ = 0.2,0.5,0.8. When the sample size is small (n = 50) and m = 5
or m = 10, all tests are affected by the moving average dynamics and tend to reject the null
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hypothesis more frequently as the value of θ increases. The figures in Table 2.1 show that the
QKW1, QKW2, QKW3 and QKW4 tests display good control of the type I error probability when
the size sample is large (n = 500). As in the previous results, QKW1p and QKW4p display the
largest MSD when the sample size is small.

Table 2.6 contains the tests null rejection rates for the βARMA(1,1) data generating pro-
cess with ϕ = 0.8 and θ = 0.2,0.5,0.8. Again, the QM, QKW1p and QKW4p test were sensitive
to changes in the value m, the worst performances taking place when m = 25 and n = 50. When
m = 5 and θ = 0.8, all tests are liberal. Hence, in a βARMA(1,1) model twith strong moving
average dynamics the tests do not perform well when m is small and n = 50; see Tables 2.4 and
2.5.

When the model contains both autoregressive and moving averages parameters, the test
proposed by Ljung and Box (1978) tends to display MSDs that are smaller than those of the
competing tests, closely followed by the test introduced by Kwan and Sim (1996b). QKW1p is
the worst performer.

The results presented so far indicate that portmanteau tests can be considerably size-distorted
in small samples when used with βARMA models. The same happens with Gaussian-based
models. As noted earlier, Lin and McLeod (2006) proposed using bootstrap resampling when
performing the portmanteau test proposed by Peña and Rodriguez (2002) with n < 1,000. Fol-
lowing up on their proposal, we shall now investigate the effectiveness of bootstrap resampling
when coupled with portmanteau tests in the class of βARMA models. We shall consider the
following bootstrap tests: QLBb, QMb, QDRb, QKW1b, QKW2b, QKW3b, QKW4b, QKW1pb and
QKW4pb. Such tests are the bootstrap variants of QLB, QM, QDR, QKW1, QKW2, QKW3, QKW4,
QKW1p and QKW4p, respectively. Since the QKW1b, QKW2b and QKW3b behave similarly, we
shall only report results for QKW1b. All results are based on 1,000 bootstrap samples, i.e.,
B = 1,000. The tests significance level is γ = 5% and the sample size is n = 50. We shall not
report results for n = 250,500 because in large samples the bootstrap tests behave similarly to
the corresponding standard tests.

Table 2.8 contains the null rejection rates of the bootstrap portmanteau tests, including the
bootstrap variant of the Peña-Rodriguez (Lin and McLeod, 2006) for the βAR(1) model with
ϕ = 0.2,0.5,0.8. It is noteworthy that all tests are now nearly size distortion free, i.e., their
null rejection rates are quite close to the selected significance level (5%). It is thus clear the
importance of using bootstrap resampling when performing portmanteau testing inferences in
small samples.

From the results presented in Table 2.7, we also note that the QDRb and QKW4pb tests display
the smallest MSDs, D̂m being the worst performer.

Table 2.9 presents the bootstrap tests null rejection rates obtained using the βMA(1) model
with θ = 0.2,0.5,0.8 for data generation. Again, all tests yield accurate inferences and are
nearly size distortion-free. In particular, the Dufour-Roy (QDR) becomes considerably more
accurate when couple with a bootstrap resampling scheme when the value of θ is large (θ =
0.8). We note that QDRb has the smallest MSD value, QM being the worst performer.

A second set of Monte Carlo simulations was carried out to evaluate the tests nonnull be-
havior, i.e., to evaluate the tests powers. Data generation is now carried out under the alternative
hypothesis and the interest lies in measuring the tests ability to detect that the model specifi-
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Table 2.7 Mean size distortion (MSD) rates of bootstrap portmanteau tests, γ = 5%.
n = 50

Test βAR(1) βMA(1)
ϕ = 0.2 ϕ = 0.5 ϕ = 0.8 θ = 0.2 θ = 0.5 θ = 0.8

D̂m 0.20 0.28 0.30 0.26 0.20 0.10
QLBb 0.10 0.20 0.18 0.06 0.18 0.38
QMb 0.12 0.22 0.18 0.16 0.26 0.24
QDRb 0.22 0.10 0.08 0.16 0.24 0.08
QKW1b 0.18 0.20 0.08 0.14 0.14 0.34
QKW4b 0.18 0.20 0.08 0.14 0.14 0.32
QKW1pb 0.14 0.20 0.12 0.14 0.22 0.20
QKW4pb 0.14 0.18 0.12 0.14 0.24 0.16

Table 2.8 Null rejection rates of bootstrap portmanteau tests, βAR(1) model, γ = 5%.
n = 50

Test ϕ = 0.2 ϕ = 0.5 ϕ = 0.8
m = 5 m = 10 m = 15 m = 20 m = 25 m = 5 m = 10 m = 15 m = 20 m = 25 m = 5 m = 10 m = 15 m = 20 m = 25

D̂m 4.8 4.9 5.3 5.4 5.0 4.1 5.0 5.1 5.0 4.6 4.7 4.8 4.6 4.6 4.8
QLBb 5.0 5.0 4.8 4.8 4.9 4.7 5.0 5.0 5.5 5.2 5.1 4.8 4.9 4.7 4.8
QMb 5.0 4.9 5.2 5.2 5.1 4.6 5.2 5.0 5.0 5.5 5.1 5.2 4.7 5.1 4.8
QDRb 5.3 4.8 5.0 4.6 4.8 5.1 5.1 5.1 4.8 5.0 5.0 4.9 4.7 5.0 5.0
QKW1b 5.0 5.0 4.7 4.5 4.9 4.7 5.0 5.1 5.3 5.3 5.0 4.9 4.7 5.0 5.0
QKW4b 5.0 5.0 4.7 4.6 4.8 4.7 5.0 5.1 5.3 5.3 5.0 4.9 4.7 5.0 5.0
QKW1pb 5.1 4.9 5.2 4.9 5.2 4.6 4.9 5.2 5.0 5.3 4.9 5.0 4.8 5.1 5.2
QKW4pb 5.1 4.9 5.2 5.0 5.3 4.6 4.9 5.2 5.0 5.2 4.9 5.0 4.9 5.2 5.2

cation is in error. The true data generating process is βARMA(1,1), and the fitted model is
βAR(1). The sample sizes are n = 50,250, the values of m range from 3 to 25, and all re-
sults are based on 5,000 Monte Carlo replications. Since the tests proposed by Kwan and Sim
(1996a,b) behave similarly, we shall only report results on QKW4. The QKW1p and QKW4p pro-
posed in this paper also behave similarly, and for that reason we shall only consider QKW4p.
Since some of the tests are liberal, we shall base all tests on exact (estimated from the size
simulations) critical values rather than on asymptotic critical values. By doing so, we force all
tests to have correct size.

Figure 2.2 displays the empirical powers of QLB, QM, QDR, QKW4 and QKW4p for βARMA(1,1)
model at ϕ = 0.2 and θ = 0.2. We notice that when n = 50 (left panel) all tests display unstable
behavior, making it difficult to single out the best performing test. QDR is the worst performer
for both sample sizes. When the sample size is large (n = 250, right panel), the tests behave
similarly when m < 5. Again, QDR is the least capable of detecting model misspecification. It
is important to note two characteristics of all tests. First, all tests performances are affected by
increasing the value of lag m: power decreases as m increases. Second, the powers of all tests
for a given value of m increase with the sample size.

Figure 2.3 presents results obtained using ϕ = 0.2 and θ = 0.5. Notice that when n = 50
the QKW4p test outperforms the competing tests for all values of m. The superiority of QKW4p
also holds for n = 250. The QDR test is the worst performing test in both sample sizes.

Figure 2.4 shows the results obtained using ϕ = 0.2 and θ = 0.8. The conclusions are
similar to those obtained from the results presented in Figure 2.3, with QKW4p outperforming
the competition. When n= 250, the QM and QKW4p tests behave similarly, both tests displaying
power close to 100%.

The empirical powers of QLB, QM, QDR, QKW4 and QKW4p for ϕ = 0.5 and θ = 0.2 are
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Table 2.9 Null rejection rates of bootstrap portmanteau tests, βMA(1) model, γ = 5%.
n = 50

Test θ = 0.2 θ = 0.5 θ = 0.8
m = 5 m = 10 m = 15 m = 20 m = 25 m = 5 m = 10 m = 15 m = 20 m = 25 m = 5 m = 10 m = 15 m = 20 m = 25

D̂m 4.8 5.2 5.4 5.3 5.2 4.5 4.9 4.7 5.0 4.9 4.8 5.2 5.1 5.0 5.0
QLBb 5.1 5.0 5.0 5.0 4.8 5.4 4.8 5.1 5.0 5.2 5.3 5.1 5.3 5.6 5.6
QMb 5.1 4.8 5.0 5.3 5.2 5.4 4.9 5.3 5.3 5.2 5.3 4.9 4.9 5.4 5.3
QDRb 5.1 5.1 4.8 5.0 4.6 5.0 4.8 4.8 4.6 4.6 4.9 5.3 5.0 5.0 5.0
QKW1b 5.3 5.0 5.2 5.2 5.0 5.4 4.9 4.9 5.1 5.0 5.4 5.1 5.2 5.4 5.6
QKW4b 5.3 5.0 5.2 5.2 5.0 5.4 4.9 5.0 5.1 5.1 5.4 5.1 5.1 5.4 5.6
QKW1pb 5.1 4.8 5.1 5.3 5.0 5.4 4.8 4.9 5.2 5.2 5.2 4.7 4.9 5.2 5.2
QKW4pb 5.1 4.8 5.1 5.3 5.0 5.4 4.8 4.9 5.3 5.2 5.2 4.7 4.9 5.2 5.0
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Figure 2.2 Powers of QLB, QM, QDR, QKW4, QKW4p; the fitted model is βAR(1) and the true data
generating process is βARMA(1,1), ϕ = 0.2 and θ = 0.2

presented in Figure 2.5. Again, when n = 50 all tests display unstable behavior. When m > 6,
we note in Figure 2.5a that the QKW4 test outperforms the competition. Figure 2.5b shows that
all tests display similar behavior, except for QDR, which displays low ability to detect model
misspecification.

Figure 2.6 presents results obtained using ϕ = 0.5 and θ = 0.5. Notice that when n = 50
(left panel) QKW4p outperforms the remaining tests for all values of m. When the sample size
is large (n = 250, right panel), the QKW4p test considerably outperforms all other tests for all
values of m. The QDR test is the worst performer in both cases (n = 50 and n = 250). Visual
inspection of Figure 2.3 reveals that the choice of m considerably impacts the powers of the
tests. In particular, the tests ability to detect model misspecification weakens as m grows.

Figure 2.7 presents results obtained using ϕ = 0.5 and θ = 0.8 in the βARMA data gener-
ating process. The QKW4p test has superior ability to detect misspecification for all values of
lag m when n= 50. When n= 250, Figure 2.7b shows that the QM and QKW4p behave similarly,
both with power close to 100%.

Figure 2.8 displays the empirical powers of QLB, QM, QDR, QKW4 and QKW4p for ϕ = 0.8
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Figure 2.3 Powers of QLB, QM, QDR, QKW4, QKW4p; the fitted model is βAR(1) and the true data
generating process is βARMA(1,1), ϕ = 0.2 and θ = 0.5
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Figure 2.4 Powers of QLB, QM, QDR, QKW4, QKW4p; the fitted model is βAR(1) and the true data
generating process is βARMA(1,1), ϕ = 0.2 and θ = 0.8

and θ = 0.2. When m > 16, QKW4p has the test most capable of detecting model misspecifica-
tion. The QDR test is the worst performer with both sample sizes.

Figure 2.9 and Figure 2.10 present results obtained using ϕ = 0.8, and θ = 0.5 and θ = 0.8
respectively. The conclusions are similar to those drawn from the previously results, with
the QKW4p being the most powerful test for both sample sizes and QDR displaying the worst
performance.
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Figure 2.5 Powers of QLB, QM, QDR, QKW4, QKW4p; the fitted model is βAR(1) and the true data
generating process is βARMA(1,1), ϕ = 0.5 and θ = 0.2
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Figure 2.6 Powers of QLB, QM, QDR, QKW4, QKW4p; the fitted model is βAR(1) and the true data
generating process is βARMA(1,1), ϕ = 0.5 and θ = 0.5

How does the value of θ impact the tests powers? In order to answer that question we
ran simulations using different values of the moving average parameter when generating the
data. The value of m is fixed at 5, the value of the autoregressive parameter (ϕ) is fixed at
0.2, and two sample sizes are used: n = 50,250. The tests estimated powers are displayed in
Figure 2.11 (left panel for n = 50 and right panel for n = 250). The QKW4 and QM tests are
the clear winners when the sample size is small, especially when the value of θ is large; QDR
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Figure 2.7 Powers of QLB, QM, QDR, QKW4, QKW4p; the fitted model is βAR(1) and the true data
generating process is βARMA(1,1), ϕ = 0.5 and θ = 0.8
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Figure 2.8 Powers of QLB, QM, QDR, QKW4, QKW4p; the fitted model is βAR(1) and the true data
generating process is βARMA(1,1), ϕ = 0.8 and θ = 0.2

is the test with smallest power. When the sample size is large, QKW4 and QM remain the most
powerful tests, but not by much, and QKW4 becomes the worst performing test.

We now move to the situation where the true data generating process is βARMA(1,1) but
the fitted model is βMA(1). In the previous case the fitted model was incorrectly specified
because it failed to take into account relevant moving average dynamics. In contrast, model
misspecification now stems from failing to account for important autoregressive dynamics. The
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Figure 2.9 Powers of QLB, QM, QDR, QKW4, QKW4p; the fitted model is βAR(1) and the true data
generating process is βARMA(1,1), ϕ = 0.8 and θ = 0.5
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Figure 2.10 Powers of QLB, QM, QDR, QKW4, QKW4p; the fitted model is βAR(1) and the true data
generating process is βARMA(1,1), ϕ = 0.8 and θ = 0.8

tests powers are displayed in Figure 2.12 which shows the estimated powers of QLB, QM, QDR,
QKW4 and QKW4p for ϕ = 0.2 and θ = 0.2. The tests ability to detect model misspecification
increase with the sample size, as expected, and decrease with m. It is important to notice that
when n = 50 and m = 3 the QDR test displays better ability to detect misspecification model
than the other tests.

Figure 2.13 displays results obtained using ϕ = 0.2 for θ = 0.5. When n = 50 (left panel)
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Figure 2.11 Powers of QLB, QM, QDR, QKW4,QKW4p; the fitted model is βAR(1) and the true model is
βARMA(1,1), ϕ = 0.2.
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Figure 2.12 Powers of QLB, QM, QDR, QKW4, QKW4p; the fitted model is βMA(1) and the true model is
βARMA(1,1), ϕ = 0.2 and θ = 0.2

and m > 10 the QKW4 test outperforms the other tests, but has low power. Figure 2.13b shows
that when m < 10 the tests behave similarly.

Figure 2.14 displays results obtained using ϕ = 0.2 for θ = 0.8. The conclusions are similar
to those drawn from Figure 2.13, with the QKW4p being the most powerful test for m > 7 and
when n = 250 all test performing similarly.

Figure 2.15 presents the empirical powers of the QLB, QM, QDR, QKW4 and QKW4p tests
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Figure 2.13 Powers of QLB, QM, QDR, QKW4, QKW4p; the fitted model is βMA(1) and the true model is
βARMA(1,1), ϕ = 0.2 and θ = 0.5
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Figure 2.14 Powers of QLB, QM, QDR, QKW4, QKW4p; the fitted model is βMA(1) and the true model is
βARMA(1,1), ϕ = 0.2 and θ = 0.8

for ϕ = 0.5 and θ = 0.2. When n = 50 the QM test is the worst performer for all values of m.
The QKW4 test outperforms the competitors when m > 10. When n = 250, QKW4 is the most
powerful test for all values of m.

Figure 2.16 presents of empirical powers using ϕ = 0.5 for θ = 0.5. When the sample
size is small (left panel), QKW4 is the most powerful test, followed by QKW4p when m is large.
When the sample size is large, QKW4 and QKW4p are the winners, but not by much when m is
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Figure 2.15 Powers of QLB, QM, QDR, QKW4, QKW4p; the fitted model is βMA(1) and the true model is
βARMA(1,1), ϕ = 0.5 and θ = 0.2

small; when m is large, the distance between the powers of QKW4 and QKW4p and those of the
remaining tests becomes more pronounced.
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Figure 2.16 Powers of QLB, QM, QDR, QKW4, QKW4p; the fitted model is βMA(1) and the true model is
βARMA(1,1), ϕ = 0.5 and θ = 0.5

Figure 2.17 displays the tests empirical powers obtained using ϕ = 0.5 for θ = 0.8. As in
the previous result, the QKW4 test is the most capable of detecting model misspecification when
n = 50. When n = 250, the QDR test is the worst performer.
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Figure 2.17 Powers of QLB, QM, QDR, QKW4, QKW4p; the fitted model is βMA(1) and the true model is
βARMA(1,1), ϕ = 0.5 and θ = 0.8

Figure 2.18a presents the empirical powers of the QLB, QM, QDR, QKW4 and QKW4p tests
for ϕ = 0.8 and θ = 0.2. The results obtained using ϕ = 0.8 and θ = 0.8 are displayed in
Figure 2.18b. In both plots the sample size is n = 50. With both data generating processes,
QKW4 is the winner. In the right panel QKW4p is the runner-up and in the left panel QKW4p is
the second best performing test when m is large. Interestingly, in both cases QM is the worst
performer. Recall that the QM and QKW4p test statistics use residual partial partial autocorrela-
tions; the QKW4p test is, however, considerably more powerful than the QM test. Even though
we do not present results for n = 250, we note that when ϕ = 0.8 all tests displayed power of
100%.

We shall now consider a different model specification error, namely: the true data generat-
ing process is βARMA(2,1) but the fitted model is βARMA(1,1), i.e., some existing autore-
gressive dynamics is not accounted for. Figure 2.19 displays the empirical powers of QLB, QM,
QDR, QKW4 and QKW4p for ϕ = 0.2, 0.2 and θ = 0.2. When n = 50, it is important to notice
the instable behavior of all tests, the QM test being the worst performer. The empirical powers
of tests when n = 250 are similar when m = 3.

Figure 2.20 presents the tests empirical powers obtained using ϕ = 0.2,0.2 for θ = 0.5. It
is noteworthy the unstable behavior of the tests when n = 50 for all values of m. When n = 250,
all tests display lower empirical powers and loss of power as the value of m increases.

Figure 2.21 displays results obtained using ϕ = 0.2,0.2 and θ = 0.8, respectively. The
conclusions are similar to those obtained from previously set of results, with the tests displaying
unstable behavior for n = 50 and having loss of empirical power when n = 250.

Figure 2.22 displays the empirical powers of QLB, QM, QDR, QKW4 and QKW4p for ϕ = 0.2,
0.5 and θ = 0.2. It is noteworthy the influence of the sample size on the tests ability to detect
that the model specification is in error: all the tests become considerably more powerful when
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Figure 2.18 Powers of QLB, QM, QDR, QKW4, QKW4p; the fitted model is βMA(1) and the true model is
βARMA(1,1), ϕ = 0.8, θ = 0.2 and ϕ = 0.8, θ = 0.8
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Figure 2.19 Powers of QLB, QM, QDR, QKW4, QKW4p; the fitted model is βARMA(1,1) and the true
model is βARMA(2,1), ϕ = 0.2,0.2 and θ = 0.2

n goes from 50 to 250. Again, the tests powers decrease with m. In both cases, the QKW4 is the
clear winner.

Figure 2.23 presents the tests empirical powers obtained using ϕ = 0.2,0.5 and θ = 0.5,
respectively. Again, all tests display unstable behavior when n = 50, the QKW4 test having
superior empirical power when m > 6. When m > 9, again the QKW4 test is the most capable
of detecting model misspecification.



2.4 NUMERICAL EVIDENCE 43

5 10 15 20 25

3.5

4.0

4.5

5.0

m

P
o
w

er
 (

%
)

QLB

QM

QDR

QKW4

QKW4p

(a) n = 50

5 10 15 20 25

4.5

5.0

5.5

6.0

6.5

7.0

m

P
o
w

er
 (

%
)

QLB

QM

QDR

QKW4

QKW4p

(b) n = 250

Figure 2.20 Powers of QLB, QM, QDR, QKW4, QKW4p; the fitted model is βARMA(1,1) and the true
model is βARMA(2,1), ϕ = 0.2,0.2 and θ = 0.5
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Figure 2.21 Powers of QLB, QM, QDR, QKW4, QKW4p; the fitted model is βARMA(1,1) and the true
model is βARMA(2,1), ϕ = 0.2,0.2 and θ = 0.8

Figure 2.24 display results obtained using ϕ = 0.2,0.5 and θ = 0.8, respectively. The
conclusions are similar to those drawn from previous results, with the tests displaying unstable
behavior for n = 50 and having loss of empirical power when n = 250, being difficult to single
out the test with the best performance.

Figure 2.25 displays the empirical powers of QLB, QM, QDR, QKW4 and QKW4p for ϕ =
0.2,0.8 and θ = 0.2. The test proposed by Kwan and Sim (1996b) again outperformed the
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Figure 2.22 Powers of QLB, QM, QDR, QKW4, QKW4p; the fitted model is βARMA(1,1) and the true
model is βARMA(2,1), ϕ = 0.2,0.5 and θ = 0.2
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Figure 2.23 Powers of QLB, QM, QDR, QKW4, QKW4p; the fitted model is βARMA(1,1) and the true
model is βARMA(2,1), ϕ = 0.2,0.5 and θ = 0.5

competition. It is noteworthy that QM (which, like QKW4p, is based on residual partial autocor-
relations) is the worst performer. We also note that QKW4p is the second best performer when
the sample size is small and m is large.

Figure 2.26a presents the empirical powers of QLB, QM, QDR, QKW4 and QKW4p for ϕ =
0.2,0.8 and θ = 0.5. The results were obtained using ϕ = 0.2,0.8 and θ = 0.8 and are displayed
in Figure 2.26b. In both plots, the results correspond to n = 50. In the left panel, QKW4
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Figure 2.24 Powers of QLB, QM, QDR, QKW4, QKW4p; the fitted model is βARMA(1,1) and the true
model is βARMA(2,1), ϕ = 0.2,0.5 and θ = 0.8
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Figure 2.25 Powers of QLB, QM, QDR, QKW4, QKW4p; the fitted model is βARMA(1,1) and the true
model is βARMA(2,1), ϕ = 0.2,0.8 and θ = 0.2

is the winner. In the right panel, the QDR test presents superior performance relative to the
competition.

Even though we do not present results for n = 250, we note that when θ = 0.5 or θ = 0.8
all tests powers equal 100%.
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Figure 2.26 Powers of QLB, QM, QDR, QKW4, QKW4p; the fitted model is βARMA(1,1) and the true
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2.5 Empirical Application

We shall now turn to the empirical application briefly described in Section 2.1. The variable of
interest, which assumes values in the standard unit interval, is the proportion of stocked hydro-
electric energy (ONS, 2016) in South Brazil. The data are monthly averages from January 2001
to October 2016, thus covering 190 months (n = 190). The next six observations (November
2016 through April 2017) were used for evaluating the three models’ forecasting accuracy. Ta-
ble 2.10 contains some descriptive statistics on the data. Notice the negative skewness and also
the negative excess kurtosis, and recall that the beta density easily accommodates such features.

Table 2.10 Descriptive statistics on the average rates of stocked energy in the South of Brazil.
min max median mean variance asymmetry excess kurtosis

0.2977 0.9862 0.7323 0.7069 0.0403 −0.3270 −1.1644

According to Shumway and Stoffer (2010), visual inspection of a time plot is recommended
for detecting data anomalies, such as the presence of outliers or non-constant variability over
time. A time series plot of the data is given by Figure 2.27. Notice that there are frequent
returns to the overall mean which is indicative of stationarity. The series correlogram and
partial correlogram are presented in Figure 2.28. The sample autocorrelation function shows
fast decay, which is also indicative of stationarity. The augmented Dickey-Fuller (ADF) test
(with drift) was applied to the data. The null hypothesis was rejected at the 1% nominal level.
Again, there is evidence of stationarity.

Model selection was performed using the Akaike Information Criterion (AIC). We consid-
ered all models with autoregressive and moving average dynamics up to the fourth order and
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Figure 2.27 Average rates of stocked energy in the South of Brazil.
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Figure 2.28 Correlogram and partial correlogram.

logit link function. The selected model was the βARMA(1,1) model, whose AIC was equal to
−307.9635. Parameter estimation was carried out by numerically maximizing the conditional
log-likelihood function using the BFGS quasi-Newton algorithm with analytical first deriva-
tives; for details on the BFGS algorithm, see Press et al. (1992). Parameter estimates, standard
errors and z-tests p-values are presented in Table 2.11. It is noteworthy that all parameters
are significantly different from zero at the 1% significance level. (Recall that α is the model
intercept.)

Table 2.11 Parameter estimates, standard errors and p-values; βARMA(1,1) model.
estimate standard error p-value

α 0.3452 0.0787 < 0.0001
ϕ1 0.5235 0.0412 < 0.0001
θ1 0.3588 0.0502 < 0.0001
φ 11.7593 1.1910 < 0.0001

Figure 2.29 contains a time series plot of the standardized residuals. One of the residu-
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als exceeds 3 in absolute value but the corresponding observation is not an outlier at the 5%
significance level according to the Bonferroni outlier criterion.
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Figure 2.29 Standardized residuals from the fitted βARMA(1,1) model.

Figure 2.30 contains the residuals correlogram (left panel) and partial correlogram (right
panel). The dotted lines indicate the corresponding 95% confidence intervals. Since all residual
autocorrelations and partial autocorrelations lie inside such intervals they can be taken to be
statistically equal to zero and, as consequence, there is no evidence of model misspecification.
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Figure 2.30 Residual correlogram and partial correlogram.

We shall now consider portmanteau testing inference, i.e., we shall use the different port-
manteau tests to assess whether the fitted model adequately represents the time series data.
The tests p-values for different values of m are presented in Figure 2.31. Each plot includes
a dashed line at 0.05. It is noteworthy that all p-values computed using 7 ≤ m ≤ 30 lie above
such a dashed line, thus indicating that the null hypothesis of correct model specification is
not rejected at the 5% significance level (for each of m individually). Indeed, the only test that
yields rejection of the null hypothesis is the test proposed by Dufour and Roy (1986) with small
values of m.

The final step in our empirical analysis involves forecasting. Indeed, stocked energy fore-
casting is quite important for all institutions responsible for energy distribution. We produced
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Figure 2.31 Portmanteau tests p-values.

forecasts using three different time series models, namely: the βARMA(1,1) model, the Gaus-
sian ARMA(1,1), and the Gaussian AR(2) model which was selected by the AIC; the latter
was selected using the auto.arima function of the forecast package of the R statistical com-
puting environment (R Core Team, 2017).

The observed time series and the predicted values from the fitted βARMA(1,1) model
are presented in Figure 2.32. It is noteworthy that that the βARMA(1,1) model is able to
satisfactorily capture the data dynamics.
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Figure 2.32 Energy stored rates (solid lines) and predict values (dashed lines) from the fitted model.

We now move from in-sample to out-of-sample forecasting. We consider a horizon of 6
months, i.e., we wish to forecasts the time series next six values. Forecasting accuracy is
measures using the mean absolute error (MAE), i.e., the mean value of the absolute differences
between observed and predicted values. The results are presented in Table 2.12 for h = 1, . . . ,6,
h denoting the forecasting horizon. We note that the βARMA(1,1) model yields forecasts that
are more accurate than those obtained from the two competing models in all cases, i.e., for h =
1, . . . ,6. For instance, when forecasting the next three observations (h = 3), the βARMA(1,1)
MAE equals 0.1364 which is considerably smaller than the MAEs of the two competing models
(0.1820 and 0.1680).

Table 2.12 Mean absolute forecasting errors, βARMA(1,1), ARMA(1,1) and AR(2).
MAE

h = 1 h = 2 h = 3 h = 4 h = 5 h = 6
βARMA(1,1) 0.1244 0.1444 0.1364 0.1484 0.1694 0.1839
ARMA(1,1) 0.1518 0.1828 0.1820 0.1982 0.2211 0.2364
AR(2) 0.1345 0.1690 0.1680 0.1830 0.2050 0.2198

2.6 Conclusion

The βARMA model is particularly useful for modeling and forecasting time series data that
assume values in the standard unit interval. The model naturally accommodates distributional
asymmetry and nonconstant variance. It will always yield fitted values and out-of-sample fore-
casts that are positive and smaller than one. Additionally, no data transformation is needed
prior to the analysis. The fitted model must be validated before it is used for forecasting. This
is where our interest lies. Can the standard portmanteau tests be used with βARMA models?
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If so, how to they behave in finite samples? What is the impact of the choice of the trunca-
tion lag (m) on the tests null and nonnull behaviors? We reviewed several portmanteau tests
that are available in the literature and proposed two new tests. The test statistics we propose
use residual partial autocorrelations instead of residual autocorrelations. We presented Monte
Carlo simulation results on the finite sample behaviors of the different portmanteau tests in the
class of βARMA models. Our results showed that some of the tests can be considerably size-
distorted when the sample size is small. We then considered bootstrap variants of the tests and
numerically evaluated their small sample performances. The evidence we provided showed that
all tests became nearly size distortion-free when they were coupled with a bootstrap resampling
scheme, especially when m is not very small.

The most interesting evidence from our numerical evaluations, however, relate to the tests
powers. First, the choice of m impacts such powers: they typically decrease with m. Second, a
portmanteau test that proved to be robust under Gaussian data — the test proposed by Dufour
and Roy (1986) — did not perform well when used with βARMA models. Third, overall,
the most powerful tests were that proposed by Kwan and Sim (1996b) and one the tests we
proposed in this paper. (The two new tests displayed similar nonnull behaviors, hence we only
presented results for one of them.) Our tests were the best performers in pure autoregressive
and moving average models and the Kwan-Sim test was the most powerful test when the model
included both autoregressive and moving average dynamics. It is noteworthy that whenever our
tests were not the most powerful ones they were the next more powerful tests as long as the
value of m was not small. Fourth, overall, the tests we proposed proved to be more powerful
that of Monti (1994). This is interesting all three test statistics make use of residual partial
autocorrelations.

We also presented and discussed an empirical application. Our focus was on modeling and
forecasting the proportion of stocked hydroelectric energy in the southern region of Brazil.
Such an empirical application showed the usefulness of portmanteau testing inference for
model validation and also the usefulness of the class of βARMA time series models. It is
noteworthy that the βARMA(1,1) used in the application yielded out-of-sample forecasts that
were more accurate than those obtained using traditional time series models, i.e., models that
are not based on the beta law.



CHAPTER 3

Recursion in Partial Derivatives

3.1 Introduction

The βARMA model (Rocha and Cribari-Neto, 2009) is a dynamic model that, in full generality,
contains both autoregressive and moving averages dynamics. When the model only includes
autoregressive dynamics the log-likelihood derivatives can be easily computed. In contrast,
when the the model includes one or more moving average components a recursive structure in
the log-likelihood derivatives must be accounted for. In this chapter, we provide closed form
expressions for βARMA(1,1) log-likelihood derivatives by considering errors in the predic-
tor scale. Additionally, we perform a numerical evaluation to assess the differences between
derivatives that take (corrrect) and do not take (incorrect) recursion into consideration. We also
consider derivatives that are computed numerically.

3.2 βARMA log-likelihood recursive partial derivatives

The conditional maximum likelihood estimators of the βARMA model cannot be expressed in
closed form. Focusing on a different class of dynamic models Benjamin et al. (1998) noted
that when the time series model includes moving average parameters it is necessary to consider
a recursive structure present in log-likelihood partial derivatives. As noted in the Section 2.2,
Rocha and Cribari-Neto (2017) provided general expressions for such partial derivatives in the
class of βARMA models. Starting values for ηt can be obtained by setting ηt = g(yt) and
the partial derivativess of η with respect to the model parameters equal to zero for t = 1, . . . ,q
(Benjamin et al., 1998).

For βARMA models, the partial derivative of the linear predictor with respect to α is

∂ηt

∂α
= 1−

q

∑
j=1

θ j
∂ηt− j

∂α
.

For example, for the βARMA(1,1) model we obtain

1−
1

∑
j=1

θ j
∂ηt− j

∂α
= 1−θ1

∂ηt−1

∂α

= 1−θ1

{
1−θ1

∂η(t−1)−1

∂α

}
= 1−θ1

{
1−θ1

[
1−θ1

∂η(t−2)−1

∂α

]}
52
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= 1−θ1

{
1−θ1

[
1−θ1

(
1−θ

∂η(t−3)−1

∂α

)]}
...

= 1+
t−2

∑
k=1

{
(−θ1)

k
}
+(−θ1)

t−1 ∂η1

∂α
.

The βARMA model may also include a set of regressors in the linear predictor. The vector
of parameters associated with such regressors is β = (β1, . . . ,βk)

′. The linear predictor partial
derivative with respect to the lth component of such a vector is

∂ηt

∂βl
= x′t−

p

∑
i=1

ϕix′t−i−
q

∑
j=1

θ j
∂ηt− j

∂β
.

As illustration, for the βARMA(1,1) model, the above derivative reduces to

x′t−
1

∑
i=1

ϕix′t−i−
1

∑
j=1

θ j
∂ηt− j

∂β
= x′t−ϕ1x′t−1−θ1

∂ηt−1

∂β

= x′t−ϕ1x′t−1−θ1

{
x′(t−1)−ϕ1x′(t−1)−1−θ1

∂η(t−1)−1

∂β

}
= x′t−ϕ1x′t−1−θ1

{
x′(t−1)−ϕ1x′(t−1)−1−θ1

[
x′(t−2)−ϕ1x′(t−2)−1

−θ1
∂η(t−2)−1

∂β

]}
= x′t−ϕ1x′t−1−θ1

{
x′(t−1)−ϕ1x′(t−1)−1−θ1

[
x′(t−2)−ϕ1x′(t−2)−1

−θ1

(
x′(t−3)−ϕ1x′(t−3)−1−θ1

∂η(t−3)−1

∂β

)]}
...

= x′t +
t−2

∑
k=1

{
(−1)kx′t−kθ

k(ϕ1θ
−1
1 +1)

}
− (−θ1)

t−2
ϕ1x′1

+(−θ1)
t−1 ∂η1

∂β
.

It is important to note that the partial derivatives with respect to the βARMA autoregressive
parameters entail no recursion. The general expression of the partial derivative with respect to
the ith autoregressive parameter (ϕi) is given by

∂ηt

∂ϕi
= g(yt−i)− x′t−iβ −

q

∑
j=1

θ j
∂ηt− j

∂ϕi
, i = 1, . . . , p.

For the βARMA(1,1) model, we obtain

g(yt−i)− x′t−iβ −
1

∑
j=1

θ j
∂ηt− j

∂ϕi
= g(yt−1)− x′t−1β −θ1

∂ηt−1

∂ϕ1
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= g(yt−1)− x′t−1β −θ1

{
g(y(t−1)−1)− x′(t−1)−1β −θ1

∂η(t−1)−1

∂ϕ1

}
= g(yt−1)− x′t−1β −θ1

{
g(y(t−1)−1)− x′(t−1)−1β −θ1

[
g(y(t−2)−1)

−x′(t−2)−1β −θ1
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]}
= g(yt−1)− x′t−1β −θ1
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[
g(y(t−2)−1)

−x′(t−2)−1β −θ1

(
g(y(t−3)−1)− x′(t−3)−1β −θ1
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)]}
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=
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∑
k=0

{
(−θ1)

k [g(y(t−k)−1− x′t−1β )
]}

+(−θ1)
t−1 ∂η1

∂ϕ1
.

When the βARMA model only contains a single, first-order moving average component,
the general expression for the partial derivative with respect to θ , the parameter associated with
such a moving average term, is given by

∂ηt

∂θl
= g(yt−l)−ηt−l−

q

∑
j=1

θ j
∂ηt− j

∂θl
, l = 1, . . . ,q.

This derivative for the βARMA(1,1) is

g(yt−l)−ηt−l−
1

∑
j=1

θ j
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.

In what follows, we shall present the the results of a set of numerical evaluations that were
carried out to compare partial derivatives computed: (i) numerically, (ii) analytically by taking
recursion into account, (iii) as presented in Rocha and Cribari-Neto (2009), i.e., without re-
cursion. [The corrected, recursively-based derivatives are presented in Rocha and Cribari-Neto
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(2017)]. We aim at proving the following question with an answer: How much precision is lost
when recursion is not accounted for?

All numerical evaluations were carried out using the R statistical environment. The numer-
ical derivatives were computed using grad function of the numDeriv package.

We consider the βARMA(1,1) model with the autoregressive parameter equal to 0.2 and
with the value of the moving average parameter varying in the closed interval [−0.9,0.9]. The
sample sizes considered are n = 50 and n = 250. In Figure 3.1 we plot the three derivatives of
ηt with respect to θ against θ . We note that, for both sample sizes (n = 50 and n = 250) the
numerical value of the partial derivatives that consider recursion are very close for all values of
θ . These two derivatives are similar to the analytic derivative computed without taking recur-
sion into consideration for −0.5 ≤ θ ≤ 0.5; when θ /∈ [−0.5,0.5], the no-recursion derivative
becomes considerably imprecise.
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Figure 3.1 Numerical partial derivative (solid line), analytic partial derivative with recursion (dashed
line) and analytic partial derivative without recursion (dot line) for the βARMA(1,1) model, ϕ = 0.2.

For better visualization, we present plots for smaller ranges of variation of θ : (i) θ assumes
values in [−0.9,−0.5] (Figure 3.2), (ii) θ assumes values in [−0.5,0.5] (Figure 3.3), and (iii) θ

assumes values in [0.5,0.9] (Figure 3.4). Notice the large difference between the two analytic
derivatives for θ < 0.5 and for θ > 0.5. It is now clear that good agreement between the
two analytic derivatives only occurs when −0.2 < θ < θ ; see Figure 3.3. In conclusion, the
derivative that does not account for recursion becomes progressively more inaccurate as |θ |
moves away from zero, more so for values of |θ | in excess of 0.5.
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Figure 3.2 Numerical partial derivative (solid line), analytic partial derivative with recursion (dashed
line) and analytic partial derivative without recursion (dot line) for the βARMA(1,1) model, ϕ = 0.2;
first range of values for θ .
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Figure 3.3 Numerical partial derivative (solid line), analytic partial derivative with recursion (dashed
line) and analytic partial derivative without recursion (dot line) for the βARMA(1,1) model, ϕ = 0.2;
second range of values for θ .
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Figure 3.4 Numerical partial derivative (solid line), analytic partial derivative with recursion (dashed
line) and analytic partial derivative without recursion (dot line) for the βARMA(1,1) model, ϕ = 0.2;
third range of values for θ .
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APPENDIX A

Appendix A

In this Appendix we present the R source codes of two Monte Carlo simulations programs that
were used to evaluate the finite sample performances of different portmanteau tests in the class
of βARMA models. The simulation results obtained using such programs were presented and
discussed in Chapter 2.

A.1 A.1 Null rejection rates without resorting to bootstrap resampling

###################################################################################################
PROGRAM: Simu_dissert1p.r

USE: The program computes the null rejection rates of the portmanteau tests in the BARMA model.

AUTHOR: Vinícius Teodoro Scher

VERSION: 1.10

LAST MODIFIED: 08/12/2016
##################################################################################################

source("simu_barma.r") #function that generates observations of a BARMA model.
source("barma.r") #function that estimates the parameters of the model.
source("barma.fit.r") #function taht estimates the parameters using recursive derivatives.
source("ljung_box.r") #function that performs the Ljung-Box test.
source("dufour.r") #function that performs the Dufour and Roy test.
source("monti.r") #function that performs the Ana Cristina Monti test.
source("kwan.r") #function that performs the 1 de Kwan and Sim test.
source("kwan2.r") #function that performs the 2 de Kwan and Sim test.
source("kwan3.r") #function that performs the 3 de Kwan and Sim test.
source("kwan4.r") #function that performs the 4 de Kwan and Sim test.
source("Kwan_Chest.R") #function that performs the Kwan and Sim tests with partial autocorrelation.

library(moments) #package that allows the calculation of curtosis and skewness.
library(doMC) #package that realize parallel simulation.
library(doRNG) #package that allows the selection of seed in parallel simulation.
library(matrixStats) #package that allows calculate descriptive measures of matrix.
registerDoMC(24) #selection of cluster number in parallel.

############################## Simulations #######################################################
R<-5000 #number of Monte Carlo replications.
vm<- c(5,10,15,20,25) #number of lag considered.
vn<- c(50,250,500) #sizes of samples.
va<-c(0.01,0.05,0.1) #significance levels.
results<-matrix(rep(NA,2160),nrow=216,ncol=10) #matrix that stores null rejection rates.
results2<-matrix(rep(NA,360),nrow=36,ncol=10) #matrix that stores descriptive measures.
results3<-matrix(rep(NA,1890),nrow=189,ncol=10)#matrix that stores quantiles.
j<-1 #index control.
b<-1 #index control.
t<-1 #index control.
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f<-1 #degress of freedom for chi-square distribution.
vp<-c(0.2,0.5,0.8) #vector for autoregressive parameters.
vq<-c(NA) #vector for moving average parameters.
prec<-120 #precision parameter.
typ<-"partial" #type of autocorrelation for Kwan_Chest function.

#Monte Carlo start
for(p in vp)
{
for(q in vq)
{
for(n in vn)
{

#null rejections rates
rej1<-matrix(rep(0,R),nrow=R, ncol=15) #partial results matrix I.
rej2<-matrix(rep(0,R),nrow=R, ncol=15) #partial results matrix II.
rej3<-matrix(rep(0,R),nrow=R, ncol=15) #partial results matrix III.
rej4<-matrix(rep(0,R),nrow=R, ncol=15) #partial results matrix IV.
rej5<-matrix(rep(0,R),nrow=R, ncol=15) #partial results matrix V.
rej6<-matrix(rep(0,R),nrow=R, ncol=15) #partial results matrix VI.
rej7<-matrix(rep(0,R),nrow=R, ncol=15) #partial results matrix VII.

#parameters of model
vectA<-rep(NA,R) #initializing alpha vector
vectP<-rep(NA,R) #initializing phi vector
vectT<-rep(NA,R) #initializing theta vector
vectPR<-rep(NA,R) #initializing precision vector

#p-values of tests
LBPV<-matrix(rep(0,R),nrow=1, ncol=5) #partial results matrix I.
MOPV<-matrix(rep(0,R),nrow=1, ncol=5) #partial results matrix II.
DRPV<-matrix(rep(0,R),nrow=1, ncol=5) #partial results matrix III.
KS1PV<-matrix(rep(0,R),nrow=1, ncol=5) #partial results matrix IV.
KS2PV<-matrix(rep(0,R),nrow=1, ncol=5) #partial results matrix V.
KS3PV<-matrix(rep(0,R),nrow=1, ncol=5) #partial results matrix VI.
KS4PV<-matrix(rep(0,R),nrow=1, ncol=5) #partial results matrix VII.

#statistics of tests
LBPVE<-matrix(rep(0,R),nrow=1, ncol=5) #partial results matrix I.
MOPVE<-matrix(rep(0,R),nrow=1, ncol=5) #partial results matrix II.
DRPVE<-matrix(rep(0,R),nrow=1, ncol=5) #partial results matrix III.
KS1PVE<-matrix(rep(0,R),nrow=1, ncol=5)#partial results matrix IV.
KS2PVE<-matrix(rep(0,R),nrow=1, ncol=5)#partial results matrix V.
KS3PVE<-matrix(rep(0,R),nrow=1, ncol=5)#partial results matrix VI.
KS4PVE<-matrix(rep(0,R),nrow=1, ncol=5)#partial results matrix VII.

#combine results by rows
comb <- function(...) {
mapply(’rbind’, ..., SIMPLIFY=FALSE)
}

#parallel simulation start
res<-foreach(i = 1:R,.combine = ’comb’, .multicombine=TRUE, .options.RNG=1955) %dorng% {
z<-simu.barma(n,phi=p,theta=q,prec=120,alpha=0.0) #generate observations of BARMA
fit<-barma(z,ar=c(1),ma=c(NA),h=12,diag=0) #fit model
x<-fit$resid1 #residuals
vectA<-fit$alpha #alpha estimate
vectP<-fit$phi #phi estimate
#vectT<-fit$theta #theta estimate
vectPR<-fit$prec #precision estimate

w<-1 #index control
for(m in vm) #lag values
{
#Ljung Box Test
teste1<-Ljung.Box(x, lag=m, fitdf =f)
LBPV[,w]<-teste1$p.value
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LBPVE[,w]<-teste1$statistic

#Monti Test
teste2<-Monti.test(x, lag=m, fitdf = f)
MOPV[,w]<-teste2$p.value
MOPVE[,w]<-teste2$statistic

#Dufour and Roy Test
teste3<-Dufour.test(x, lag=m, fitdf = f)
DRPV[,w]<-teste3$p.value
DRPVE[,w]<-teste3$statistic

#Kwan and Sim(1) Test
teste4<-Kwan.sim.test1(x, lag=m, fitdf = f)
KS1PV[,w]<-teste4$p.value
KS1PVE[,w]<-teste4$statistic

#Kwan and Sim(4) Test
teste5<-Kwan.sim.test4(x, lag=m, fitdf = f)
KS2PV[,w]<-teste5$p.value
KS2PVE[,w]<-teste5$statistic

#Kwan and Sim(1) with partial autocorrelation
teste6<-Kwan.sim.chest(x, lag=m, fitdf = f,type=typ,test=1)
KS3PV[,w]<-teste6$p.value
KS3PVE[,w]<-teste6$statistic

#Kwan and Sim(4) with partial autocorrelation
teste7<-Kwan.sim.chest(x, lag=m, fitdf = f,type=typ,test=4)
KS4PV[,w]<-teste7$p.value
KS4PVE[,w]<-teste7$statistic
w<-w+1
}

list(LBPV,MOPV,DRPV,KS1PV,KS2PV,KS3PV,KS4PV,LBPVE,MOPVE,DRPVE,KS1PVE,KS2PVE,KS3PVE,KS4PVE,
vectA,vectP,vectPR)

}

#conditional vectors
for(i in 1:R)
{

for(w in 1:5)
{
rej1[i,w+5]<-as.integer(res[[1]][i,w]<va[2])
rej2[i,w+5]<-as.integer(res[[2]][i,w]<va[2])
rej3[i,w+5]<-as.integer(res[[3]][i,w]<va[2])
rej4[i,w+5]<-as.integer(res[[4]][i,w]<va[2])
rej5[i,w+5]<-as.integer(res[[5]][i,w]<va[2])
rej6[i,w+5]<-as.integer(res[[6]][i,w]<va[2])
rej7[i,w+5]<-as.integer(res[[7]][i,w]<va[2])
}

}

#output
#null rejection rates
#significance level - 5%
results[(16+((b-1)*24)-7),6:10]<-colSums(rej1[,6:10])/R #null rejection rates for ljung-box
results[(16+((b-1)*24)-6),6:10]<-colSums(rej2[,6:10])/R #null rejection rates for Monti
results[(16+((b-1)*24)-5),6:10]<-colSums(rej3[,6:10])/R #null rejection rates for Dufour and Roy
results[(16+((b-1)*24)-4),6:10]<-colSums(rej4[,6:10])/R #null rejection rates for Kwan and Sim(1)
results[(16+((b-1)*24)-3),6:10]<-colSums(rej5[,6:10])/R #null rejection rates for Kwan and Sim(4)
results[(16+((b-1)*24)-2),6:10]<-colSums(rej6[,6:10])/R #null rejection rates for Kwan and Sim(1p)
results[(16+((b-1)*24)-1),6:10]<-colSums(rej7[,6:10])/R #null rejection rates for Kwan and Sim(4p)

#Descriptive measures for vector alpha’s
results2[(4*b-3),6]<-round(colMeans(res[[15]]),digits = 4) #mean
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results2[(4*b-3),7]<-round(colVars(res[[15]])+(colMeans(res[[15]])-0)^2,digits = 4) #MSE
results2[(4*b-3),8]<-round(kurtosis(c(res[[15]])),digits=4) #kutosis
results2[(4*b-3),9]<-round(skewness(c(res[[15]])),digits=4) #skewness

#Descriptive measures for vector phi’s
results2[(4*b-2),6]<-round(colMeans(res[[16]]),digits=4) #mean
results2[(4*b-2),7]<-round(var(c(res[[16]]))+(colMeans(res[[16]])-p)^2,digits = 4) #MSE
results2[(4*b-2),8]<-round(kurtosis(res[[16]]),digits=4) #kutosis
results2[(4*b-2),9]<-round(skewness(res[[16]]),digits=4) #skewness
results2[(4*b-2),10]<-round(abs((colMeans(res[[16]])-p))*100/p,digits=4) #relative bies

#Descriptive measures for vector theta’s
#results2[(4*b-1),6]<-round(colMeans(res[[16]]),digits=4) #mean
#results2[(4*b-1),7]<-round(var(c(res[[16]]))+(colMeans(res[[16]])-q)^2,digits = 4) #MSE
#results2[(4*b-1),8]<-round(kurtosis(res[[16]]),digits=4) #kutosis
#results2[(4*b-1),9]<-round(skewness(res[[16]]),digits=4) #skewness
#results2[(4*b-1),10]<-round(abs((colMeans(res[[16]])-p))*100/p,digits=4) #relative bies

#Descriptive measures for vector precision’s
results2[(4*b-0),6]<-round(colMeans(res[[17]]),digits=4) #mean
results2[(4*b-0),7]<-round(var(c(res[[17]]))+(colMeans(res[[17]])-120)^2,digits = 4)#MSE
results2[(4*b-0),8]<-round(kurtosis(res[[17]]),digits=4) #kutosis
results2[(4*b-0),9]<-round(skewness(res[[17]]),digits=4) #skewness
results2[(4*b-0),10]<-round(abs((colMeans(res[[17]])-120))*100/120,digits=4) #relative bies

#quantiles
for(k in 1:5)
{
#Ljung-Box
results3[(21*b-20),k+5]<-colQuantiles(res[[8]],probs = c(0.99,0.95,0.90))[k,1]
results3[(21*b-19),k+5]<-colQuantiles(res[[8]],probs = c(0.99,0.95,0.90))[k,2]
results3[(21*b-18),k+5]<-colQuantiles(res[[8]],probs = c(0.99,0.95,0.90))[k,3]
#Monti
results3[(21*b-17),k+5]<-colQuantiles(res[[9]],probs = c(0.99,0.95,0.90))[k,1]
results3[(21*b-16),k+5]<-colQuantiles(res[[9]],probs = c(0.99,0.95,0.90))[k,2]
results3[(21*b-15),k+5]<-colQuantiles(res[[9]],probs = c(0.99,0.95,0.90))[k,3]
#Dufour and Roy
results3[(21*b-14),k+5]<-colQuantiles(res[[10]],probs = c(0.99,0.95,0.90))[k,1]
results3[(21*b-13),k+5]<-colQuantiles(res[[10]],probs = c(0.99,0.95,0.90))[k,2]
results3[(21*b-12),k+5]<-colQuantiles(res[[10]],probs = c(0.99,0.95,0.90))[k,3]
#Kwan and Sim(1)
results3[(21*b-11),k+5]<-colQuantiles(res[[11]],probs = c(0.99,0.95,0.90))[k,1]
results3[(21*b-10),k+5]<-colQuantiles(res[[11]],probs = c(0.99,0.95,0.90))[k,2]
results3[(21*b-9),k+5]<-colQuantiles(res[[11]],probs = c(0.99,0.95,0.90))[k,3]
#Kwan and Sim(4)
results3[(21*b-8),k+5]<-colQuantiles(res[[12]],probs = c(0.99,0.95,0.90))[k,1]
results3[(21*b-7),k+5]<-colQuantiles(res[[12]],probs = c(0.99,0.95,0.90))[k,2]
results3[(21*b-6),k+5]<-colQuantiles(res[[12]],probs = c(0.99,0.95,0.90))[k,3]
#Kwan and Sim(1p)
results3[(21*b-5),k+5]<-colQuantiles(res[[13]],probs = c(0.99,0.95,0.90))[k,1]
results3[(21*b-4),k+5]<-colQuantiles(res[[13]],probs = c(0.99,0.95,0.90))[k,2]
results3[(21*b-3),k+5]<-colQuantiles(res[[13]],probs = c(0.99,0.95,0.90))[k,3]
#Kwan and Sim(4p)
results3[(21*b-2),k+5]<-colQuantiles(res[[14]],probs = c(0.99,0.95,0.90))[k,1]
results3[(21*b-1),k+5]<-colQuantiles(res[[14]],probs = c(0.99,0.95,0.90))[k,2]
results3[(21*b-0),k+5]<-colQuantiles(res[[14]],probs = c(0.99,0.95,0.90))[k,3]
}

print(results)
print(results2)
print(results3)
j<-1
b<-b+1
t<-t+1
}
}
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}

A.2 A.2 Empirical powers without resorting to bootstrap resampling
###################################################################################################
PROGRAM: poderm1K.r

USE: The program computes the empirical powers of the portmanteau tests in the BARMA model.

AUTHOR: Vinícius Teodoro Scher

VERSION: 1.2

LAST MODIFIED: 23/03/2017
##################################################################################################

source("simu_barma.r") #function that generates observations of a BARMA model.
source("barma.r") #function that estimates the parameters of the model.
source("barma.fit.r") #function taht estimates the parameters using recursive derivatives.
source("ljung_box.r") #function that performs the Ljung-Box test.
source("dufour.r") #function that performs the Dufour and Roy test.
source("monti.r") #function that performs the Ana Cristina Monti test.
source("kwan.r") #function that performs the 1 de Kwan and Sim test.
source("kwan2.r") #function that performs the 2 de Kwan and Sim test.
source("kwan3.r") #function that performs the 3 de Kwan and Sim test.
source("kwan4.r") #function that performs the 4 de Kwan and Sim test.
source("Kwan_Chest.R") #function that performs the Kwan and Sim tests with partial autocorrelation.

set.seed(1955) #selection seed
R<-5000 #number of Monte Carlo replications.
vm<- c(seq(from = 3, to = 25, by = 1)) #number of lag considered.
vn<- c(50,250) #sizes of samples.
va<-c(0.05) #significance levels.
results<-matrix(rep(NA,2996),nrow=107,ncol=28)#matrix that stores empirical powers rates.
b<-1 #index control.
t<-1 #index control.
f<-1 #degress of freedom for chi-square distribution.
vp<-c(0.2,0.5,0.8) #vector for autoregressive parameters.
vq<-c(0.2,0.5,0.8) #vector for moving average parameters.
typ<-"partial" #type of autocorrelation for Kwan_Chest function.

#Simulation start
for(n in vn)
{

for(p in vp)
{

for(q in vq)
{
#empirical powers rates
j<-1 #index control
rej1<-matrix(rep(0,R),nrow=R, ncol=15) #partial results matrix I.
rej2<-matrix(rep(0,R),nrow=R, ncol=15) #partial results matrix II.
rej3<-matrix(rep(0,R),nrow=R, ncol=15) #partial results matrix III.
rej4<-matrix(rep(0,R),nrow=R, ncol=15) #partial results matrix IV.
rej5<-matrix(rep(0,R),nrow=R, ncol=15) #partial results matrix V.
rej6<-matrix(rep(0,R),nrow=R, ncol=15) #partial results matrix VI.
rej7<-matrix(rep(0,R),nrow=R, ncol=15) #partial results matrix VII.

#p-values of tests
LBPV<-matrix(rep(0,R),nrow=1, ncol=5) #partial results matrix I.
MOPV<-matrix(rep(0,R),nrow=1, ncol=5) #partial results matrix II.
DRPV<-matrix(rep(0,R),nrow=1, ncol=5) #partial results matrix III.
KS1PV<-matrix(rep(0,R),nrow=1, ncol=5) #partial results matrix IV.
KS2PV<-matrix(rep(0,R),nrow=1, ncol=5) #partial results matrix V.
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KS3PV<-matrix(rep(0,R),nrow=1, ncol=5) #partial results matrix VI.
KS4PV<-matrix(rep(0,R),nrow=1, ncol=5) #partial results matrix VII.

#Monte Carlo start
for(i in 1:R)

{
z<-simu.barma(n,phi=c(p),theta=c(q),prec=120,alpha=0.0) #generate observations of BARMA
fit<-barma(z,ar=c(1),ma=c(NA),h=12,diag=0) #fit model
x<-fit$resid1 #residuals

w<-1 #index control
for(m in vm) #lag values
{
#Ljung Box Test
teste1<-Ljung.Box(x, lag=m, fitdf =f)
LBPV[,w]<-teste1$p.value

#Monti Test
teste2<-Monti.test(x, lag=m, fitdf = f)
MOPV[,w]<-teste2$p.value

#Dufour and Roy Test
teste3<-Dufour.test(x, lag=m, fitdf = f)
DRPV[,w]<-teste3$p.value

#Kwan and Sim(1) Test
teste4<-Kwan.sim.test1(x, lag=m, fitdf = f)
KS1PV[,w]<-teste4$p.value

#Kwan and Sim(4) Test
teste5<-Kwan.sim.test4(x, lag=m, fitdf = f)
KS2PV[,w]<-teste5$p.value

#Kwan and Sim(1) with partial autocorrelation
teste6<-Kwan.sim.chest(x, lag=m, fitdf = f,type=typ,test=1)
KS3PV[,w]<-teste6$p.value

#Kwan and Sim(4) with partial autocorrelation
teste7<-Kwan.sim.chest(x, lag=m, fitdf = f,type=typ,test=4)
KS4PV[,w]<-teste7$p.value
w<-w+1
}

rej1<-rej1+as.integer(LBPV<va)
rej2<-rej2+as.integer(MOPV<va)
rej3<-rej3+as.integer(DRPV<va)
rej4<-rej4+as.integer(KS1PV<va)
rej5<-rej5+as.integer(KS2PV<va)
rej6<-rej6+as.integer(KS3PV<va)
rej7<-rej7+as.integer(KS4PV<va)

}

#output
#empirical powers rates
#significance level - 5%
for(j in 1:23)
{
results[(8+((b-1)*8)-7),j+5]<-sum(rej1[j])/R #empirical powers for ljung-box
results[(8+((b-1)*8)-6),j+5]<-sum(rej2[j])/R #empirical powers for Monti
results[(8+((b-1)*8)-5),j+5]<-sum(rej3[j])/R #empirical powers for Dufour and Roy
results[(8+((b-1)*8)-4),j+5]<-sum(rej4[j])/R #empirical powers for Kwan and Sim(1)
results[(8+((b-1)*8)-3),j+5]<-sum(rej5[j])/R #empirical powers for Kwan and Sim(4)
results[(8+((b-1)*8)-2),j+5]<-sum(rej6[j])/R #empirical powers for Kwan and Sim(1p)
results[(8+((b-1)*8)-1),j+5]<-sum(rej7[j])/R #empirical powers for Kwan and Sim(4p)
}
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print(results)

#columns labels
for(g in 1:5)
{

results[6+((b-1)*6)-g,1]<-n
results[6+((b-1)*6)-g,2]<-p
results[6+((b-1)*6)-g,3]<-q
results[6+((b-1)*6)-g,4]<-va

}
b<-b+1

}
}

}



APPENDIX B

Appendix B

In this appendix we modity the tsdiag function available in the stats package of the statistical
software R. In our empirical application, presented in Section 2.5, we noted that such a function
cannot be directly used with residuals from a fitted time series model because the number of
degrees of freedom of the chi-square reference distribution is not correctly defined.

B.1 B.1 The modified tsdiag function

The tsdiag function obtains sample autocorrelations of the series by calling another function,
namely: Box.Test. Such a function can be applied to residuals from a fitted time series model
since it allows users to specify how many degrees of freedom should be subtracted from m.
However, tsdiag uses Box.Test in its default mode, which perform any adjustment to the number
of degrees of freedom of the χ2 reference distribution. The tsdiag source code is:

function (object, gof.lag = 10, ...)
{

oldpar <- par(mfrow = c(3, 1))
on.exit(par(oldpar))
rs <- object$residuals
stdres <- rs/sqrt(object$sigma2)
plot(stdres, type = "h", main = "Standardized Residuals", ylab = "")
abline(h = 0)
acf(object$residuals, plot = TRUE, main = "ACF of Residuals", na.action = na.pass)
nlag <- gof.lag
pval <- numeric(nlag)
for (i in 1L:nlag) pval[i] <- Box.test(rs, i, type = "Ljung-Box")$p.value #HERE
plot(1L:nlag, pval, xlab = "lag", ylab = "p value", ylim = c(0, 1),
main = "p values for Ljung-Box statistic")
abline(h = 0.05, lty = 2, col = "blue")

}

We marked the line that needs to be corrected ‘#HERE’. The Box.text function receives four
arguments: first, the series (rs); second, number of sample autocorrelations to be used when
computing the test statistic; third: the test statistic to be computed (“Ljung-Box”); fourth: how
many degrees of freedom must be subtracted from m when the series is comprised of residuals
from a fited model (empty, default=0). We recommend that the signaled line be altered so that
the proper correction to the number of degrees of freedom is made. The correct code is:

function (object, gof.lag = 10, fitdf=0) #MODIFIED
{

oldpar <- par(mfrow = c(3, 1))
on.exit(par(oldpar))
rs <- object$residuals
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stdres <- rs/sqrt(object$sigma2)
plot(stdres, type = "h", main = "Standardized Residuals", ylab = "")
abline(h = 0)
acf(object$residuals, plot = TRUE, main = "ACF of Residuals", na.action = na.pass)
nlag <- gof.lag
pval <- numeric(nlag)
for (i in 1L:nlag) pval[i] <- Box.test(rs, i, type = "Ljung-Box", fitdf)$p.value #MODIFIED
plot(1L:nlag, pval, xlab = "lag", ylab = "p value", ylim = c(0, 1),
main = "p values for Ljung-Box statistic")
abline(h = 0.05, lty = 2, col = "blue")

}

With the proposed adjustment the tsdiag function can be used with residuals from a fitted time
series model.


