

SERVIÇO PÚBLICO FEDERAL MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE PERNAMBUCO DEPARTAMENTO DE ENGENHARIA MECÂNICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA

Recife, 11 de julho de 2022.

Disciplina:

Tópicos Especiais em Engenharia de Materiais e Fabricação

Tema: Tratamento de Superfícies para Resistencia à Corrosão e ao Desgaste.

Créditos - Carga Horária: 03 - 45h/a – Horário Quarta-feira 13:00 as 16:00h

Professores responsáveis:

- Dr. Severino Leopoldino Urtiga Filho.
- Dr^a. Magda Rosângela Santos Vieira.

Ementa

- Comportamento de superfícies metálicas sob exposição a ambientes com severa solicitação de corrosão e desgaste;
- Técnicas de proteção de superfícies para resistência à corrosão e ao desgaste;
- Características de materiais aplicados em revestimento, para aumento da de resistência à corrosão e ao desgaste, aplicação de revestimentos metálicos e orgânicos;
- Galvanoplastia. Técnica, materiais de revestimento, potencial e aplicabilidade;
- Deposição eletroquímica. Técnica, materiais de revestimento, potencial e aplicabilidade;
- Deposição Aspersão Térmica. Técnica, materiais de revestimento, potencial e aplicabilidade;
- Deposição por Solda a Arco e por Plasma Pó. Técnica, materiais de revestimento, potencial e aplicabilidade;
- Deposição por Laser. Técnica, materiais de revestimento, potencial e aplicabilidade;
- Aplicação de revestimentos orgânicos para proteção à corrosão e ao desgaste;
- Técnicas de controle de Corrosão: revestimentos, inibidores, proteção anódica, proteção catódica;
- Ensaios de monitoramento de corrosão;
- Casos práticos

Bibliografia

• P. L. Fauchais, J.V.R. Heberlein, and M. Boulos, Thermal Spray Fundamentals, Springer US, 2014.

SERVIÇO PÚBLICO FEDERAL MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE PERNAMBUCO DEPARTAMENTO DE ENGENHARIA MECÂNICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA

- V.E. Carter, Metallic Coatings for Corrosion Protections, Elsevier, 1977.
- S. Bose, High Temperature Coatings, Elsevier, 2007.
- R. Singh, Corrosion Control for Offshore Structures, Elsevier, 2014
- J.O'M. Bockris, A.K.N. Reddy, Modern Electrochemistry, J. O'M. Bockris, vol. 1 e 2, Plenum/Rosetta Edition, 1970.
- D.A. Jones, Principles and Prevention of Corrosion, Maxwell Macmillan International Editions, 1992.
- J.O'M. Bockris, S.U.M. Khan, Surface Electrochemistry, A Molecular Level, Plenum Press, 1993. A.M.O.
- Brett, C.M.A. Brett, Electrochemistry, Principles, Methods and Applications, Oxford University Press, 1993.
- A.J. Bard, Electrochemical Methods: Fundamentals and Applications. John Wiley Co., London, 2003.
- S. Wolynec. Técnicas Eletroquímicas em Corrosão. EdUSP, 2003.
- Artigos complementares.

FICHA DE DISCIPLINA NOVA DA PÓS-GRADUAÇÃO *STRICTO SENSU* - UFPE

PROGRAMA:	PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA
CENTRO:	TECNOLOGIA E GEOCIÊNCIAS

	DADOS I	DA DISCIPLINA						
NOME DA DISCIPLINA:	Tópicos Especiais em Engenharia de Materiais e Fabricação — Tratamentos Térmicos de Ligas Ferrosas e Não Ferrosas							
CARGA HORÁRIA:	45 hs NÚMERO DE CRÉDITOS:							
TIPO DE COMPONENTE:	() disciplina	(X) tópicos especiais	() seminários					
EMENTA:	1. Introdução 2. Tratamentos térmicos: nomenclatura, aplicações e características de fabricação 3. Tipos de tratamentos térmicos: recozimento, normalização, têmpera, revenimento, austêmpera, martêmpera e coalescimento 4. Tratamentos termo-químicos: cementação, nitretação, cianetração 5. Aplicações de tratamentos térmicos a aços: diagrama Fe-C, curvas TTT e TRC 6. Tratamento térmicos de ligas não ferrosas: alumínio, cobre, magnésio, titânio. 7. Tratamentos de Superfície							
	8. Equipamentos e atmosferas de tratamentos térmicos							
BIBLIOGRAFIA:	ed., Editora Associação B Paulo-SP, 2003. [2] Paulo Sergio de F Editora: SENAI - SP I [3] ASM Handbook – [4] William D. Calliste Engenharia de Mater Edição - 2008. [5] William F. Smith e e Ciência dos Materia 2012. [6] André Luiz V. da C Ligas	rasileira de Metalurgia reitas - Tratamento Té EDITORA. Heat Treatment – Volu r Jr. e David G. Rethwi iais – Uma Introdução Javad Hashemi – Fun ais – Editora McGraw-F	rmico dos Metais - ume 4, 1991. isch – Ciência e – Editora LTC – Oitava damentos de Engenharia Hill – Quinta Edição –					

FICHA DE NOVO COMPONENTE CURRICULAR DA PÓS-GRADUAÇÃO *STRICTO SENSU* - UFPE

NOME DO PROGRAMA:	Programa de Pós-Graduação em Engenharia Mecânica
CENTRO:	СТБ

DADOS COMPLEMENTARES PARA O PROGRAMA						
NOME DO DOCENTE RESPONSÁVEL	José Ângelo	Peixoto da	Costa			
OFERTA:	()1° semes	tre (X) 2° sen	nestre	() 1° e 2° semesti	res
COMPONENTE DO	(X) mestrad	lo ((X) dout	orado		
OBRIGATÓRIA	() sim	(X) não			
CARGA HORÁRIA:	TEÓRICAS:		45	hs	PRÁTICAS:	10hs
COMPONTENTE PRÉ-REQUISITO	CÓDIGO:		NOME:			

DADOS DO COMPONENTE							
NOME DO COMPONENTE:	Tópicos Especiais em Energia II (EDS (Engineering Data Science))						
CARGA HORÁRIA:	45 hs	TIPO DE COMPONENTE:	(X) disciplina	() atividade			
		COMPONENTE FLEXÍVEL:	() sim	() não			
EMENTA	_	Introdução a ciência de dados; Fundamentos; Aprendizado de máquina para engenharia; Redes Neurais e DeepLearning para engenharia.					
	de diversas fon Justificativa: O simulações CF críticas e que r para diversos p Conteúdo prog 1 – Introdução Aplicações e Pe 2 – Fundament 2.1 – Introduçã 2.2 – Estatística 2.3 – Análise Ex	e aplicação da ciência de dados perspectivas futuras.	nica. de dados, seja vi tenção e/ou produ apaz de conseguir e para engenharia: His manipulação de dad manipulação de dad	indo de experimentos, ução, com informações extrair informações úteis stórico;			

- 2.4.1 Extração e manipulação de dados de BD de manutenção industrial
- 2.4.2 Análise Exploratória de dados de consumo energético industrial
- 2.4.3 Extraindo dados de simulação CFD(Computational Fluid Dynamics)
- 3 Aprendizado de Máquina para engenharia.
- 3.1 Aprendizado Supervisionado
 - 3.1.1 Regressões Regressão linear; Regressão polinomial;
 - 3.1.2 Classificadores KNN; SVM; Regressão logística
- 3.2 Aprendizado Não-Supervisionado
 - 3.2.1 Redução de dimensionalidade (PCA Análise de componentes principais)
 - 3.2.2 Clustering K-Means; DBscan
- 3.3 Métodos de Ensemble
 - 3.3.2 Bagging Florestas aleatórias
 - 3.3.3 Boosting XGBoost;
- 4 Redes neurais e DeepLearning para engenharia
- 4.1. MLP Perceptrons
- 4.2. CNN(Convolutational Neural Networks) DCNN
- 4.3. RNN(Recurrent Neural Networks) LSM;LSTM;
- 4.4. Autoencoders seq2seq

Método de avaliação: Trabalho de simulação de conceitos fundamentais; Apresentação de trabalho final no formato de artigo científico ou patente. A nota será a média aritméticas das avaliações.

REFERÊNCIAS:

Básicas:

GERON, A. Mãos à obra: aprendizado de máquina com Scikit-Learn, Keras & TensorFlow: Conceitos, ferramentas e técnicas para a construção de sistemas inteligentes. O'Reilly Media, 2021.

BRUCE, A. & BRUCE, P. Estatística prática para cientistas de dados: 50 conceitos essenciais. O'Reilly Media, 2019.

GRUS, J. Data Science do zero_ Primeiras regras com o Python. Alta Books, 2016.

McKinney, W.Python para análise de dados. O'Reilly Media, 2018.

HARRISON,M. Machine Learning – Guia de Referência Rápida: Trabalhando com Dados Estruturados em Python. O'Reilly Media, 2019.

ALBON, C. Machine learning with Python cookbook: Practical solutions from preprocessing to deep learning. O'Reilly Media, 2018.

Complementares:

NIELSEN,A. Análise Prática de Séries Temporais: Predição com Estatística e Aprendizado de Máquina. O'Reilly Media, 2021.

MARSLAND, S. Machine learning: An algorithmic perspective. CRC Press, 2011.

MÜLLER, A.; C, M.; GUIDO, S. Introduction to machine learning with Python: A guide for data scientists. O'Reilly Media, 2016.

RASCHKA, S. Python machine learning. Packt Publishing, 2015.

ZHENG, A.; CASARI, A. Feature engineering for machine learning: Principles and techniques for data scientists. O'Reilly Media, 2018.

FICHA DE NOVO COMPONENTE CURRICULAR DA PÓS-GRADUAÇÃO *STRICTO SENSU* - UFPE

NOME DO PROGRAMA:	PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA - PPGEM
CENTRO:	TECNOLOGIA E GEOCIÊNCIAS - CTG

DADOS COMPLEMENTARES PARA O PROGRAMA						
NOME DO DOCENTE RESPONSÁVEL	Paulo Roberto	Maciel Lyra	a & Ramir	o Brito W	/illmersdorf	
OFERTA:	()1° semestre	(X) 2° seme	stre	() 1° e 2° semestres	
COMPONENTE DO	(X) mestrado	()	doutora	do		
OBRIGATÓRIA	() sim	(X) não			
CARGA HORÁRIA:	TEÓRICAS:		45	5hs	PRÁTICAS:	0hs
COMPONENTE PRÉ- REQUISITO	CÓDIGO:		NOME :			

DADOS DO COMPONENTE							
NOME DO COMPONENTE:	Tópicos Es _l	Tópicos Especiais em Energia III (Modelagem Computacional de Dutos com					
		Amassamento)					
CARGA HORÁRIA:	45hs	TIPO DE COMPONENTE:	(X) disciplina	() atividade			
		COMPONENTE FLEXÍVEL:	(X) sim	() não			
			•				

EMENTA

O curso proporcionará conhecimentos sobre análise de tensões em dutos com defeitos de amassamento, considerando análise não-linear física e geométrica, através de modelagem computacional, para tubulações utilizadas no transporte de hidrocarbonetos.

Objetivo: Proporcionar ao aluno informações necessária à compreensão do fenômeno de amassamento, análise de tensões e seus efeitos e consequências. Assim como, a utilização das normas técnicas e da modelagem e simulação computacional no estudo da integridade estrutural de dutos com defeitos de amassamento.

Justificativa: A modelagem computacional se apresenta como uma alternativa e complemento às análises teóricas e experimentais, permitindo flexibilidade e respostas precisas com custos e tempo compatíveis com a tomada de decisão de projetos mecânicos.

Conteúdo programático:

Tubulações para o transporte de hidrocarbonetos: fundamentos, materiais, carregamento de pressão externa, inspeções;

Defeitos em tubulações: mecanismos de degradação, corrosão -- mecanismos e tipos, danos mecânicos;

"Fitness for service": avaliação da segurança operacional de tubulações: normas e métodos avançados;

Técnicas de reparo em tubulações: reposição de trechos, soldagens de camisas e patches;

Modelagem via Elementos Finitos: revisão da teoria, modelagem geométrica, geração de malhas, problemas de elasticidade linear bi e tridimensionais, modelos de casca:

Modelagem não linear: não linearidade geométrica e de material, problemas de contato;

Modelagem de tubulações com defeitos via Elementos Finitos: tubulações íntegras, criação e análise de defeitos de amassamento por especificação direta da geometria, criação e análises de defeitos criados por simulação de puncionamento;

Método de avaliação:

N1 (Peso 4): Trabalho teórico: Introdução apresentando a problemática de dutos com defeito de amassamento; Revisão bibliográfica; Motivação e Justificativa da utilização da modelagem computacional e Metodologia. Com defesa.

N2 (Peso 6): Estudos de casos de dutos com defeito de amassamento, com defesa.

NFinal: [(**N1** x 40) + (**N2** x 60)] / 100

REFERÊNCIAS:

Básicas:

Finite Element Simulations with Ansys Workbench 2021, Theory, Applications, Case Studies, Huei-Huang Lee. SDC Publications, 2021.

PDAM -The Pipeline Defect Assessment Manual, A. Cosham, P. Hopkins, Materials Science, 2002.

Piping and Pipeline Engineering: Design, Construction, Maintenance, Integrity, and Repair, G. A. Antaki, L. Faulkner, CRC Press, 2003.

Complementares:

American Petroleum Institute, API 1156, Effects of Smooth And Rock Dents On Liquid Petroleum Pipelines, 1997 Edition.

American Society of Mechanical Engineers, ASME B31.4, Liquid Transportation System for Hydrocarbons, Liquid Petroleum Gas, Anhydrous Ammonia and Alcohols, 2016 Edition.

American Society of Mechanical Engineers, ASME B31.8, Gas Transmission and Distribution Piping Systems, 2016 Edition.

API 1156, 1999, Effects of Smooth and Rock Dents on Liquid Petroleum Pipelines (Phase II), American Petroleum Institute.

FICHA DE NOVO COMPONENTE CURRICULAR DA PÓS-GRADUAÇÃO *STRICTO SENSU* - UFPE

NOME DO PROGRAMA:	Programa de Pós-Graduação em Engenharia Mecânica
CENTRO:	ν

DADOS COMPLEMENTARES PARA O PROGRAMA						
NOME DO DOCENTE RESPONSÁVEL	José Ângelo	Peixoto d	a Costa			
OFERTA:	()1° seme	stre	(X) 2° se	mestre	() 1° e 2° semes	tres
COMPONENTE DO	(X) mestra	ido	(X) dout	torado		
OBRIGATÓRIA	() sim		(X) não			
CARGA HORÁRIA:	TEÓRICAS:		35 hs	ì	PRÁTICAS:	10hs
COMPONTENTE PRÉ- REQUISITO	CÓDIGO:		NOME:			

		DADOS DO COMPONENTE						
NOME DO COMPONENTE:	Simulação Multifísica FSI (Fluid Structure Interaction) – PEM932							
CARGA HORÁRIA:	45 hs	TIPO DE COMPONENTE:	FE: (X) disciplina () ativ					
		COMPONENTE FLEXÍVEL:	() sim	() não				
EMENTA	EMENTA Introdução ao FSI; Elementos finitos, análise estática, análise dinâmica, fadiga; Méto dos volumes finitos; Interação Fluido Estrutura; Aplicações.							
	-	acitar o aluno na resolução de pr Fluidos Computacional acoplado	=					
	Justificativa: Muitos problemas de engenharia necessitam de uma abordagem acoplada de múltiplas física como é o caso do acoplamento de problemas estruturais com a Dinâmica dos Fluidos Computacional.							
	Conteúdo programático: 1 — Introdução e aplicação Simulação FSI (Fluid Structure Interaction): Histórico; Aplicações e Perspectivas futuras.							
2 – Introdução à Análise Estrutural FEA (Finite Element Analys) Histórico; Moc CAD; Geração da malha; Condições de contorno; Pós-Processamento.								
	2.2 - Método	ação de equações diferenciais dos Elementos Finitos: ELEMENTO nento da simulação: domínio com		ísica do				

problema e pós processamento

- 2.4 Solução de problemas de engenharia aplicados ao FEA:
- 2.4.1 Treliças e vigas
- 2.4.2 Chapas e elementos de casca (vasos de pressão)
- 2.4.3 Concentração de tensão e singularidade numérica
- 2.4.4 Análise de transferência de calor
- 2.4.5 Análise não linear (grandes deformações, plasticidade, materiais anisotrópicos
- 2.4.6 Análise dinâmica
- 2.4.7 Análise de fadiga
- 2 Introdução à Dinâmica dos Fluidos Computacional (CFD):Histórico;Modelagem CAD ; Geração da malha; Condições de contorno; Pós-Processamento.
- 2.1 Simulação 2D Elbow
- 2.2 Simulação Equipamento de Mistura
- 2.3 Simulação de Feixe de tubos de trocador
- 2.4 Análise CHT (Conjugate Heat Transfer)
- 2.5 Simulação Perfil aerodinâmico NACA 0012
- 2.6 Escoamento turbulento (modelos de turbulência)
- 3 Simulação FSI (Fluid Structure Interaction)
- 3.1. Introdução às abordagens Análise de uma via (1-way) e análise de duas vias (2-way)
- 3.2. Co-simulação Geometria e Malhas
- 3.3. Co-simulação Configuração FEA, CFD e System Coupling
- 3.4. Co-simulação Análise de convergência de resultados
- 4 Aplicações FSI
- 4.1. Análise de Tensões Térmicas de tubulações (1-way);
- 4.2. Análise FSI de Perfil NACA 0012 (1-way);
- 4.3. Análise FSI de Flap hiperelástico (2-way);
- 4.4. Análise FSI de Coletor de Exaustão Automotivo (2-way).

Método de avaliação: Trabalho de simulação de conceitos fundamentais; Apresentação de trabalho final no formato de artigo científico ou patente. A nota será a média aritméticas das avaliações.

REFERÊNCIAS:

Básicas:

KIM, N., H; SANKAR, B. V. Introdução à Análise e ao Projeto em Elementos Finitos. 1ª ed. LTC, 2011.

AVELINO, A. Elementos Finitos a Base da Tecnologia CAE, 5º ed. Érica, 2007.

Maliska, C. R. **Transferência de calor e mecânica dos fluidos computacional**. 2. ed. Rio de Janeiro: LTC, 2004.

Fortuna, A. O. **Técnicas computacionais para dinâmica dos fluidos**. São Paulo: EDUSP, 2000.

Versteeg, H. K.; Malalasekera, W. An introduction to computational fluid dynamics, the finite volume method. 2. ed. Harlow, England: Pearson, 2007.

Complementares:

Patankar, S. V. **Numerical heat transfer and fluid flow**. New York: Hemisphere, 1980. Anderson, J.D. Jr. **Computational Fluid Dynamics - The Basics with Applications**, 1995, McGraw-Hill.

Ferziger, J.H. e PERIC, M. **Computational Methods for Fluid Dynamics**, 2002, Springer-Verlag.

Fish, j., Belytschko, T. Um primeiro Curso em Elementos Finitos, 1ª ed. LTC, 2009.

Soriano, H. L. Elementos finitos – Formulação e Aplicação na Estática e Dinâmica das Estruturas. 1ª ed. Ciência Moderna, 2009.

Logan. D. L. A First Course in the Finite Element Method. Cengage Learning; 6º ed, 2016.

Vaz, L. E. **Método dos elementos finitos em análise de estruturas**. 1ª ed. Campus, 2011. Cook, R. D. **Finite Element Modeling for Stress Analysis**, John Wiley & Sons, 1995.