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Large-scale nonlinear Optimal Power Flow (OPF) problems have been solved lately

by primal-dual interior point (IP) methods and, despite their success, there are

many situations in which IP-based OPF programs can fail to find a solution. On

the other hand, with power systems operating heavily loaded, there is a need for

globally convergent OPF solvers. Trust region schemes have been used to enforce

convergence, but they are by nature computationally expensive. The main goal of

the Thesis is to reduce the computational effort of the Byrd-Omojokun (BO) trust

region OPF algorithm proposed by Sousa et al.. The BO technique handles possible

inconsistencies in the trust region subproblems by solving a sequence of quadratic

programming (SQP) problems, known as the vertical and horizontal subproblems.

The idea exploited to reduce the computation time is to avoid the solution of the

vertical subproblem after the iteration its optimal objective value becomes zero,

since this means that the constraints of the trust region subproblem are consistent.

The proposed algorithm is called Modified Byrd-Omojokun (MBO) and, by directly

solving the trust region subproblems, it is expected to reduce the computation time

to nearly half from that iteration on. Additionally, an alternative procedure based

on sequential ℓ1 quadratic programming (Sℓ1QP) is devised. Rather than solving

two quadratic programming (QP) problems per iteration as in the Byrd-Omojokun

technique, the Sℓ1QP approach solves a single, but slightly larger, QP problem. The

Thesis makes a contribution towards the solution of nonlinear OPF problems in real

time by addressing the discussed issues. The proposed methodologies are tested in

the IEEE test systems of up to 300-bus and two actual subtransmission systems.
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Problemas não-lineares de Fluxo de Potência Ótimo (FPO) de grande dimensão

têm sido resolvidos por métodos primais-duais de pontos interiores (PI) e, apesar

do sucesso, existem várias situações em que programas baseados nesses métodos

podem falhar em encontrar a solução. Por outro lado, com sistemas de potência

operando extremamente carregados, existe a necessidade de programas de FPO

globalmente convergentes. Esquemas de região de confiança têm sido usados para

assegurar convergência, mas eles são por natureza computacionalmente onerosos.

O principal objetivo da Tese é reduzir o esforço computacional do algoritmo de

Byrd-Omojokun (BO) de região de confiança proposto por Sousa et al.. A técnica

de BO trata posśıveis inconsistências nos subproblemas de região de confiança re-

solvendo uma sequência de problemas de programação quadrática (PQ) conhecidos

como subproblemas vertical e horizontal. A ideia explorada para reduzir o tempo

computacional é evitar a solução do subproblema vertical após a iteração em que o

valor ótimo do seu objetivo torna-se zero, uma vez que isso indica que as restrições

do subproblema de região de confiança são consistentes. O algoritmo proposto é

chamado Byrd-Omojokun modificado e, por resolver diretamente os subproblemas

de região de confiança, espera-se que ele reduza o tempo computacional para cerca

da metade a partir daquela iteração. Adicionalmente, um procedimento alternativo

baseado em programação sequencial ℓ1 quadrática (PSℓ1Q) é desenvolvido. Em vez

de resolver dois problemas de PQ por iteração como ocorre na técnica de BO, o

método de PSℓ1Q resolve um único, porém ligeiramente maior, problema de PQ.

A Tese contribui para a solução de problemas de FPO não-linear desenvolvendo os

aspectos discutidos. As metodologias propostas são testadas nos sistemas do IEEE

até o 300-bus e dois sistemas reais de subtransmissão.
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Chapter 1

Introduction

I
N THE PAST years, the time required to execute some power systems analysis

during the operation and planning studies has been significantly reduced. A

great number of computational programs have been designed to perform net-

work analysis and to guide new investments. Nowadays, power grid operators can

count on advanced energy management systems for monitoring and controlling al-

most all instances from generation to electric power distribution, providing data

for online security analysis. Additionally, with the advent of distributed generation

systems and advanced metering infrastructure, massive real-time power systems

calculations are becoming very usual. Thus, computational tools for power systems

analysis must be prepared to face future challenges, providing a fast, secure and

reliable solution for electrical engineering problems.
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1.1 Optimal Power Flow

Among the computational tools that are generally included in supervisory systems,

the optimal power flow (OPF) [3–9] can be considered one of the most important

and prominent. According to [10], OPF can be defined as the determination of

the best operating point (that is minimum fuel cost, maximum power transferred

between areas, minimum load shedding, among others) satisfying security con-

straints.

Several OPF problems have been studied since its first mathematical formu-

lation by Carpentier [11] in the 1960’s. Research topics mainly concentrate on

new formulations, which attempt to address some special characteristics such as

the treatment of discrete variables [12–22], handling of infeasible OPF problems

[23], reduction of the number of control actions [24–27], etc. In addition, a great

effort has been made in order to improve the solution techniques [28] and to model

power systems equipments [29].

OPF problems are inherently nonconvex nonlinear programming (NLP) prob-

lems, which can be formulated as follows:

min f(x)

subject to g(x) = 0

x ≤ x ≤ x

(1.1)

where,

• x ∈ R
n is a vector of decision variables, including state and control variables

such as voltages at generation buses, tap of power transformers and reactive

shunt compensation;

• f : Rn 7→ R is the objective function representing a planning or operational

goal, such as active transmission losses minimization;

• g : Rn 7→ R
m is a vector of nonlinear equality constraints including the power

balance equations;

• x ∈ R
n and x ∈ R

n are vectors of simple bounds, which represent equipment

or system’s operational limits.

2



1.1.1 Active Transmission Losses Minimization

A basic formulation of the active transmission losses minimization problem gener-

ally includes the active and reactive power balance equations, the operational limits

related to voltage levels in all buses, the active and reactive power limits of gen-

erators and the physical limits of transformers with load tap changer (LTC) and of

shunt compensation devices.

With the exception of the swing bus, the active power generation in all buses

are assumed constant and equal to the values defined by the economic dispatch

problem [11]. The control variables, i.e., the variables that can be controlled by the

electrical grid operators, are terminal voltages of generators, shunt susceptancies of

switchable capacitors and reactors and taps of LTC transformers. The state variables

are the voltage magnitudes at load buses, the phases of nodal voltages and reactive

power of generators.

In a compact form, the active transmission losses minimization problem can be

expressed as follows:

min PLosses(V, θ, t)

subject to Pi(V, θ, t) + PDi
− PGi

= 0, ∀i ∈ N

Qi(V, θ, t) +QDi
−QGi

= 0, ∀i ∈ G

Qi(V, θ, t) +QDi
−QGi

= 0, ∀i ∈ F

Qi(V, θ, t) +QDi
−QGi

− bshi V
2
i = 0, ∀i ∈ C

V min
i ≤ Vi ≤ V max

i , ∀i ∈ N

Pmin
i ≤ PGi

≤ Pmax
i , ∀i ∈ G

Qmin
i ≤ QGi

≤ Qmax
i , ∀i ∈ G

tmin
ij ≤ tij ≤ tmax

ij , {(i, j)} ⊆ T

bmin
i ≤ bshi ≤ bmax

i , ∀i ∈ C

(1.2)

where N is the set of all buses, G is the set of all generation buses, F is the set of all

buses with fixed reactive sources, C is the set of buses with variable shunt capacitors

(or reactors), T is the set of LTC transformers. Additionally, PGi
and PDi

are the

active generation and load, QGi
and QDi

are the reactive generation and demand,

and bshi is the shunt susceptance at bus i, respectively.

As described in [30], the active and reactive power injections Pi(V, θ, t) and

3



Qi(V, θ, t) are defined as follows:

Pi(V, θ, t) = V 2
i Gii + Vi

∑

k∈Ni

Vk (Gik cos θik +Bik sen θik) (1.3)

Qi(V, θ, t) = −V
2
i Bii + Vi

∑

k∈Ni

Vk (Gik sen θik − Bik cos θik) (1.4)

where Vi and θi are the voltage magnitude and phase angle (θij = θi − θj), and Ni

is the set of all buses connected to the bus i.

The objective function of (1.2) is the total active loss in the transmission system

PLosses(V, θ, t), which is calculated as follows:

PLosses =
∑

{(i,j)}∈B

gij
(
V 2
i + V 2

j − 2ViVj cos θij
)

(1.5)

where B = {(i, j) | i ∈ N , j ∈ Ni and j > i} is the set of terminal buses of all

system’s branches (transmission lines and transformers, among others).

The active losses minimization problem is used throughout this work mainly

because such an implementation is readily available in the actual stage of the de-

signed OPF code. Besides, this minimization problem can provide, without loss

of generality, all the required tools to extensively test our developed trust region

IP methods. Additionally, the main set of nonlinear network equations is already

present in this problem. For further details regarding the modeling of other OPF

problems the reader can consult [31, 32].

1.2 Solution Methods

Lately, large-scale OPF problems have been successfully solved by primal-dual inte-

rior point (IP) methods [33], mainly for the primal-dual predictor-corrector [34] and

multiple centrality corrections [35, 36] variants. However, there are many situations

in which OPF programs can fail to find a solution [37]. In fact, locally convergent

algorithms may fail to converge when the initial guess is not near to a solution. For-

tunately, globally convergent techniques can be used to obtain convergence from

remote starting points.

Line search and trust region methods are two important descent schemes for

guaranteeing global convergence [1]. Each iteration of a line search method com-

4



putes a search direction and then decides how far to move along that direction by

defining a step length. The success of a line search procedure depends on effective

choices of both the direction and the step length. On the other hand, trust re-

gion methods define a region around the current iterate within which they trust the

model to be an adequate representation of the objective function and then choose

the step to be the approximate minimizer of the model in this region.

Trust region methods [38, 39] have been used to provide global convergence

to a great diversity of algorithms from unconstrained to constrained optimization.

They can be used to transform a general NLP problem into a sequence of well-

behaved subproblems by adding a trust region constraint to the original problem

and by approximating its functions by linear and quadratic models. The resulting

subproblems are commonly quadratic and can be solved by classical methods for

quadratic programming (QP). Therefore, solving a general NLP problem by a trust

region method involves outer and inner iterations. In each outer iteration a trust

region subproblem is formulated. The inner iterations are those to solve the formu-

lated trust region subproblems. Quite often, mainly in the initial outer iterations,

the feasible set of the trust region subproblem is empty because the constraints are

incompatible, that is, the linearized constraints do not intercept the trust region

constraint [40]. Several approaches have been proposed in order to resolve the

possible conflict between satisfying the linearized constraints and the trust region

constraint [41].

The application of trust region methods to power systems problems has in-

creased over the last few years. Pajić and Clements [42, 43] used a trust region

method for unconstrained optimization, along with a QR factorization, to obtain

a reliable and more robust state estimator. Numerical simulations were carried

out with the IEEE test systems up to the 118-bus and the results indicate that the

globally convergent algorithm has superior performance when compared to the

Gauss-Newton method [1]. Similarly, Hassäıne et al. [44] used the trust region

Levenberg-Marquardt method [1] to increase the robustness of a new M-estimator.

Costa et al. [45] proposed a combination of trust region and sequential-orthogonal

methods in order to devise globally convergent state estimators.

Min and Shengsong [46] proposed a trust region IP approach for linear pro-

gramming (LP) to solve OPF problems up to 662 buses. They used a relaxation of

the linearized constraints in the trust region subproblem in order to overcome pos-

sible infeasibility. Wang et al. [47] proposed three separate techniques, including
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a trust region based augmented Lagrangian method, for reliable and efficient com-

putation of large-scale market-based OPF. Giacomoni et al. [48] used a trust region

method to solve an LP OPF problem. El-Sobky et al. [49] introduced a trust region

algorithm for unconstrained optimization to solve a reactive power compensation

problem. Bisheh et al. [50] presented a trust region based augmented Lagrangian

method for solving the economic power dispatch problem. Biehl [51] used the Stei-

haug’s conjugate gradient method [1] to solve the trust region problems that arise

from constrained power flow.

Torres [52] used complementarity functions to obtain an unconstrained opti-

mization problem that is solved by the dogleg trust region method [1]. Souza et

al. [53] developed a globally convergent trust region IP algorithm and applied it

to the classical active losses minimization problem. They used the Byrd-Omojokun

approach [40] to handle possible inconsistencies in the formulation of the trust re-

gion problems. The simulations were performed on the IEEE test systems up to

300-bus and a real system with 1211 buses. Additionally, cases with an increased

load illustrate the robustness of the proposed algorithm. Four types of initializa-

tions, including random initialization, were also successfully tested and a detailed

discussion of the numerical results was provided.

This work follows the Byrd-Omojokun trust region approach by Souza et al.

[53]. This method consists in solving a sequence of QP problems and handles in-

compatible constraints by dividing the trust region problem into two subproblems,

which are known as vertical and horizontal subproblems. The vertical and horizon-

tal subproblems have nearly the same order of the trust region problem and they

are solved alternately until convergence is obtained. The resolution of the vertical

subproblem aims at finding a feasible point that is strictly inside the trust region. If

the trust region problem is infeasible, the vertical subproblem reduces the primal

infeasibility by minimizing the squared Euclidean norm of the equality constraints.

As discussed in [41], it is the vertical subproblem that relaxes the original con-

straints enough to allow consistency. In the same way, the role of the horizontal

subproblem is to make the same progress that the vertical does towards satisfy-

ing the linearized equality constraints while minimizing the objective function of

the trust region problem. Additionally, if a feasible point is found for the vertical

subproblem, the horizontal subproblem is feasible as well.

Even though the focus of a globally convergent trust region algorithm is on

robustness, it is relevant to note that the Byrd-Omojokun technique is computation-
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ally more expensive than the primal-dual IP algorithms. However, as pointed out

in [53], the computational performance of the Byrd-Omojokun algorithm, as far as

processing time is concerned, can be much further improved. Towards this end,

note that when the optimal objective of the vertical subproblem (squared residuals

of the linearized constraints) becomes zero, then a feasible point to the trust region

subproblem has been found, that is, the linearized constraints and the trust region

constraint are consistent. Thus, under certain assumptions, it may be possible to

directly solve the trust region subproblem from that outer iteration on. The direct

solution of the trust region subproblems, that is, the solution of the trust region

subproblem without dividing it into the vertical and horizontal subproblems, can

significantly reduce the total computational effort because a single QP problem is

solved in each outer iteration. Additionally, note that if a feasible point is found

during the solution of the first vertical problem, the total algorithm run time can be

reduced by nearly half.

Another way to improve the performance of the Byrd-Omojokun algorithm is

to reduce the computational effort in the solution of each trust region subproblem.

Considering that a sequence of QP problems is solved, looser tolerance criteria on

the vertical and horizontal subproblems may give the necessary approximation to

the minimizer while reducing the overall number of matrix factorizations along with

forwards and backwards solves. Similarly, the application of higher-order primal-

dual IP methods to the solution of the trust region subproblems can also reduce the

run time while increasing the robustness.

The main objective of this research is to investigate possible ways to improve

the computational performance of the Byrd-Omojokun strategy proposed by Souza

et al. [53] in the context of the solution of OPF problems. The motivation is

to develop faster globally convergent trust region algorithms, which can be used

when the available IP methods fail to converge. In addition, based on the works

of Fletcher et al. [54, 55] and Gould et al. [56] concerning the use of sequential

quadratic programming (SPQ) methods and exact ℓ1 penalty functions, an alternative

methodology is analyzed. This approach can handle incompatible constraints in the

trust region problems and is expected to be as robust as and faster than the Byrd-

Omojokun method described in [53].
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1.3 Objectives of the Thesis

The objectives and main contributions of this research proposal are summarized as

follows:

• To develop methodologies to reduce the computational effort of the Byrd-

Omojokun trust region algorithm proposed in [53]. With this goal, a proce-

dure to directly solve the trust region problem is investigated.

• To analyze the influence of using looser tolerance criteria on the vertical and

the horizontal subproblems. It may be possible to reduce the number of matrix

factorizations by approximating the solution of the trust region subproblems.

• To devise a globally convergent algorithm based on SQP methods and ex-

act ℓ1 penalty functions that is competitive in processing time with the Byrd-

Omojokun strategy.

• To investigate the impact of the trust region parameters on the performance

of the proposed techniques. As discussed in [57], the numerical efficiency

of trust region algorithms can be further improved with a better parameter

selection. Thus, it is relevant to examine different sets of parameters for the

class of nonlinear OPF problems.

• To use infeasibility indicators to monitor the proposed trust region algorithms.

The indicators can be employed to infer whether or not a trust region problem

is infeasible.

• To implement the optimization methods used to solve the OPF problems. As

discussed by [58], efficient computational codes of IP methods for LP can be

written using the MATLAB R© environment and their performance are compa-

rable with a good Fortran routine. Additionally, [59] provides closed forms to

efficiently implement OPF second derivatives.

• To discuss the numerical results obtained by the proposed techniques as well

as possible enhancements of the methodologies and developed computational

codes.
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1.4 Contents of the Thesis

The Thesis is organized as follows. In Chapter 2, an introduction to penalty func-

tions is given. The most popular techniques such as the quadratic and the ℓ1 penalty

methods, in addition to the augmented Lagrangian method, are briefly described.

In Chapter 3, the pure primal-dual and the primal-dual predictor-corrector IP

methods for NLP are presented. These locally convergent IP methods, along with

a trust region strategy, can provide a globally convergent algorithm to solve OPF

problems.

In Chapter 4, the main concepts of trust region methods for unconstrained

and constrained optimization are given. The general formulation of nonlinear

least-squares problems and the most popular solution methods, named the Gauss-

Newton and the Levenberg-Marquardt methods [1], are presented. Finally, the

Byrd-Omojokun approach [40] and the sequential ℓ1 quadratic programming [54]

technique are described.

In Chapter 5, some modifications on the Byrd-Omojokun technique proposed

by Souza et al. [53] are described with the aim of reducing its computational time.

Additionally, a sequential ℓ1 quadratic programming approach is developed as an

alternative to the Byrd-Omojokun method.

In Chapter 6, the numerical experiments involving the proposed methods are

presented and the main results are discussed. The simulations are carried out us-

ing different starting points, including randomly generated ones, and descriptive

statistics are furnished.

Finally, in Chapter 7, the main conclusions of the research and the perspectives

for future research are presented.
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Chapter 2

Penalty Methods

T
HIS CHAPTER presents penalty methods that can be used to solve constrained

optimization problems. Some emphasis is given to the exact ℓ1 penalty func-

tion, which provides the main insights for the devised SQP method that will

be discussed later in this work. Additionally, the quadratic penalty method and

the augmented Lagrangian method are briefly described. These penalty methods

are somehow related to the logarithmic barrier method [60], in which logarithmic

terms prevent feasible iterates from moving too close to the boundary of the feasi-

ble region. This technique also forms part of the foundation for modern IP methods

detailed in Chapter 3.

This chapter follows closely the discussion presented in [1] and tries to capture

the most important points of it for the developed work. For a more comprehensive

explanation concerning penalty methods the reader is referred to [1, 54, 61].
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2.1 The Quadratic Penalty Method

Consider a general NLP problem in the following form:

min f(x)

subject to g(x) = 0

h(x) ≤ 0

(2.1)

where x ∈ R
n, f(x) : Rn → R, g(x) : Rn → R

m and h(x) : Rn → R
p.

Penalty methods usually define a sequence of penalty functions in which the

penalty terms for constraint violations are multiplied by a positive coefficient and

added to the original objective of the problem. By enlarging this coefficient, the

constraint violations are penalized more severely in way that the minimizer of the

penalty function tends to remain within the feasible region of (2.1).

According to [1], the simplest penalty function is the quadratic penalty func-

tion, in which the penalty terms are the squares of the constraint violations. For

the general NLP problem (2.1), the quadratic penalty function can be defined as

follows:

ψ(x, η) = f(x) +
η

2

m∑

i=1

g2i (x) +
η

2

p∑

i=1

(
[hi(x)]

+)2
(2.2)

where [hi(x)]
+ denotes max (0, hi(x)) and η is the penalty parameter.

By driving η to∞, the constraint violations are penalized with increasing sever-

ity. The general idea of penalty methods is to consider a sequence of values {ηk}

with ηk → ∞ as k → ∞ and to find the approximate minimizer xk of ψ(x, ηk) for

each k. The parameter sequence {ηk} can be chosen adaptively, based on the diffi-

culty of minimizing the penalty function at each iteration and on estimates of the

Lagrange multipliers.

One must observe that when only equality constraints are present in (2.2),

ψ(x, η) is smooth. On the other hand, when also considering inequalities, the

penalty function ψ(x, η) may be less smooth than the objective and constraint func-

tions. Additionally, as ηk becomes larger, the minimization of ψ(x, ηk) generally be-

comes more difficult to perform due to ill-conditioning of the Hessian ∇2
xxψ(x, ηk)

[1]. Thus, when solving (2.2) by the Newton’s method, the steps that it generates

may not make a fast progress toward the minimizer of ψ(x, ηk) since this method

is based on the quadratic model. Furthermore, even when x is close to the mini-
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mizer of ψ(x, ηk), the quadratic Taylor series approximation to ψ(x, ηk) around x is a

good estimate of the true function only in a small neighborhood of x. This difficulty

can be reduced in some way by a proper choice of the starting point in the next

linearization or by defining a slightly larger penalty parameter.

2.2 The ℓ1 Penalty Method

As discussed in [54], an attractive approach to NLP is to attempt to determine an

exact penalty function ψ(x, η) that is locally minimized by the solution x∗ of (2.1).

This holds out the possibility that the solution x∗ can be found by a single appli-

cation of an unconstrained minimization technique to ψ(x, η) instead of requiring

a sequential process. Besides, the property of being exact is desirable because it

makes the performance of penalty methods less dependent on the strategy for up-

dating the penalty parameter.

A popular nonsmooth penalty function for the general NLP problem (2.1) is the

exact ℓ1 penalty function defined as follows:

ψ(x, η) = f(x) + η

m∑

i=1

|gi(x)|+ η

p∑

i=1

[hi(x)]
+ (2.3)

where [hi(x)]
+ stands for max (0, hi(x)) and η is called the ℓ1 penalty parameter.

Its name derives from the fact that the penalty term is η times the ℓ1 norm of the

constraint violations. In addition, one should observe that ψ(x, η) is not differen-

tiable at some x because of the presence of the absolute value |gi(x)| and [hi(x)]
+

functions.

To illustrate how the ℓ1 penalty method works and its dependency on the value

of the penalty parameter η, consider two simple examples. First, consider the fol-

lowing minimization problem in one varible,

min x

subject to 1− x ≤ 0
(2.4)

and its corresponding ℓ1 penalty function:

ψ(x, η) = x+ η [1− x]+ (2.5)
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As shown in Figure 2.1, the ℓ1 penalty function (2.5) has a minimizer at x∗ = 1

when η > 1, but is a monotone increasing function when η < 1.

ψ(x, η = 2)

yy

yy

x

x

x

x

2

−1

1

1

1

1

1

1

1

1

ψ(x, η = 1)

ψ(x, η = 0) ψ(x, η = −1)

Figure 2.1: The exact ℓ1 penalty function for problem (2.4) (Adapted from [1, 2]).

Similarly, consider the following problem:

min x1 + x2

subject to x21 + x22 − 2 = 0
(2.6)

and the related ℓ1 penalty function:

ψ(x, η) = x1 + x2 + η|x21 + x22 − 2| (2.7)

As can be seen in Figures 2.2 and 2.3, the ℓ1 penalty function (2.7) is nonsmooth

along the boundary of the circle defined by x21+x
2
2 = 2. Additionally, by considering

that |λ∗| = 0.5 is the absolute value of the Lagrange multiplier corresponding to the

equality constraint (2.6), function (2.7) has a minimizer x∗ that coincides with the

solution of problem (2.6) for all η > |λ∗|.
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Figure 2.2: The exact ℓ1 penalty function for problem (2.6) with η = −1 (Adapted
from [1]).
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Figure 2.3: The exact ℓ1 penalty function for problem (2.6) with η = 1 (Adapted
from [1]).

According to [1], the simplest strategy for updating the ℓ1 penalty parameter

is to increase it by a constant multiple. If the initial value η0 is too small, many

cycles may be necessary to determine an appropriate value. On the other hand, if

η0 is excessively large, the penalty function will be difficult to minimize, possible

requiring a large number of iterations. As will be discussed later in this work, a

simple and effective scheme to update the ℓ1 penalty parameter, based on the values

of the problem’s Lagrange multipliers, is devised in the context of a SQP method.
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The exact ℓ1 penalty function is nonsmooth and, consequently, nondifferentiable

for some x. Instead of minimizing directly a nonsmooth function, the minimizer of

ψ(x, η) can be obtained by forming a simplified model of this function and finding

the minimizer of this model. A model function can be defined by linearizing the

constraints gi(x) and hi(x) of the NLP problem (2.1) and replacing the nonlinear

objective f(x) by a quadratic function, as follows:

ψ̃(d, η) =f(x) +∇f(x)Td+
1

2
dTHd+ η

m∑

i=1

|gi(x) +∇gi(x)
Td|+

+ η

p∑

i=1

[
hi(x) +∇hi(x)

Td
]+ (2.8)

where H is a symmetric matrix which generally contains second derivative infor-

mation about f(x), gi(x) and hi(x), ∀i. The model ψ̃(d, η) is still nonsmooth, but

fortunately one can turn the minimization of ψ̃(d, η) into the solution of a smooth

QP problem by introducing elastic variables (p, q) ∈ R
m and t ∈ R

p, as follows:

min f(x) +∇f(x)Td+
1

2
dTHd+ η

m∑

i=1

(pi + qi) + η

p∑

i=1

ti (2.9a)

subject to g(x) +∇g(x)Td = p− q, (p, q) ≥ 0 (2.9b)

hi(x) +∇hi(x)
Td ≤ t, t ≥ 0 (2.9c)

As discussed in [1], problem (2.9) can be solved by using a standard QP solver.

Besides, even with the addition of a “box-shaped” trust region constraint of the form

‖d‖∞ ≤ ∆, problem (2.9) remains a QP problem. Additionally, it is not difficult to

show that if the general NLP problem (2.1) assumes the particular form (1.1), that

is, with only simple bound constraints on the variable x, the corresponding smooth

QP problem can be reduced to the following:

min f(x) +∇f(x)Td+
1

2
dTHd+ η

m∑

i=1

(pi + qi) (2.10a)

subject to g(x) +∇g(x)Td = p− q, (p, q) ≥ 0 (2.10b)

x ≤ xk + d ≤ x (2.10c)

In this case, it is important to observe that the starting point d0 for problem

(2.10) should be in the closed interval [x− xk, x− xk], which is a relatively simple
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task because of the simple bounds.

2.3 The Augmented Lagrangian Method

As previously discussed, the quadratic penalty function (2.2) may suffer from ill-

conditioning as ηk becomes larger. This section briefly shows the bound constrained

formulation of the augmented Lagrangian method [1], which reduces the possibility

of ill-conditioning by introducing explicit Lagrange multiplier estimates into the

function to be minimized.

Given the general NLP problem (2.1), one can transform it to a problem with

equality and simple bound constraints by introducing slack varibles z ∈ R
p and

replacing the general inequalities h(x) ≤ 0 by h(x) + z = 0 and z ≥ 0. That is,

problem (2.1) can be rewritten in the following form:

min f(x)

subject to g(x) = 0

h(x) + z = 0, z ≥ 0

(2.11)

The bound constrained augmented Lagrangian method incorporates only the

equality constraints from (2.11) into the augmented Lagrangian function, as fol-

lows:

L(x, z, λ, υ, η) =f(x) +
m∑

i=1

λigi(x) +
η

2

m∑

i=i

g2i (x)+

+

p∑

i=1

υi [hi(x) + zi] +
η

2

p∑

i=i

[hi(x) + zi]
2

(2.12)

where λi and υi are Lagrange multipliers. Additionally, the bound constraints are

considered explicitly in the minimization problem, as follows:

min L(x, z, λ, υ, η)

subject to z ≥ 0
(2.13)

The procedure consists in approximately solve (2.13), update the Lagrange

multiplier vectors λ and υ, along with the penalty parameter η, and test for conver-

gence. If the tolerance criteria are met, the algorithm stops. Otherwise, the process
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is repeated. An efficient technique to solve the bound constrained problem (2.13)

is the nonlinear version of the gradient projection method. The interested reader is

referred to [1, 62] for more details.

2.4 Final Remarks

This chapter briefly presented penalty methods that are suitable for the solution

of general NLP problems. The simplest penalty function is the quadratic one, but

the quadratic penalty method suffers from ill-conditioning as the penalty parameter

becomes larger. The bound constrained augmented Lagrangian method is a closed

related technique that reduces the possibility of ill-conditioning by introducing ex-

plicit Lagrange multiplier estimates into the augmented Lagrangian function.

The ℓ1 penalty method uses the nonsmooth exact ℓ1 penalty function to handle

constraint violations. The main concepts regarding this penalty method, along with

its important smooth reformulation as a QP problem, are used later in the Thesis to

devise a SQP method in the context of the solution of OPF problems by trust region

IP methods.
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Chapter 3

Interior Point Methods for Nonlinear

Programming

T
HERE IS a great diversity of optimization methods to solve NLP problems

in the general form (1.1) [1, 33, 39, 54]. Particularly, the solution of OPF

problems has been successfully addressed by primal-dual IP methods [8, 59].

Modern IP methods have their origins in the logarithmic barrier methods attributed

to Frisch [60] and later extended by Fiacco and McCormick [63] for nonlinear

inequality problems. However, at least for large-scale LP problems, the practical

performance of the simplex method [61, 64] appeared to be insuperable until the

breakthrough by Karmarkar [65] in 1984. After Karmarkar’s paper about his new

polynomial-time algorithm, many variants of IP methods were developed. This

chapter briefly describes two well known variants called the pure primal-dual (or

simply primal-dual) method and the primal-dual predictor-corrector method [34].
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3.1 The Primal-Dual Interior Point Method

In order to derive the primal-dual algorithm, first consider an NLP problem in the

form (1.1):

min f(x)

subject to g(x) = 0

x ≤ x ≤ x

where x ∈ R
n, f : Rn 7→ R and g : Rn 7→ R

m. The primal-dual method operates on

the following modified problem:

min f(x)

subject to g(x) = 0

x+ s− x = 0, s ≥ 0

x+ z − x = 0, z ≥ 0

(3.1)

where all inequality constraints are transformed into equalities by adding vectors

of slack variables s ∈ R
n and z ∈ R

n. The nonnegativity conditions s ≥ 0 and z ≥ 0

in (3.1) are incorporated into logarithmic barrier functions that are added to the

objective function and the following problem is obtained:

min f(x)− µk

n∑

i=1

(ln si + ln zi)

subject to g(x) = 0

x+ s− x = 0, s > 0

x+ z − x = 0, z > 0

(3.2)

where µk > 0 is the barrier parameter, which is monotonically reduced to zero as

the iterative process evolves, i.e., µ0 > µ1 > · · · > µk > · · · > µ∞ = 0. The

strict positivity conditions s > 0 and z > 0 must be imposed in order to define the

logarithmic terms. However, these conditions are implicitly handled through a step

length control.

The first-order necessary optimality conditions for the modified problem (3.2),

for a fixed barrier parameter µk, can be derived from the Lagrangian function
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L(y;µk) associated with problem (3.2), which is defined as follows:

L(y;µk) = f(x)−µk

n∑

i=1

(ln si+ln zi)+λ
Tg(x)+πT (x+ s−x)+υT(x+ z−x) (3.3)

where λ ∈ R
m, π ∈ R

n
+ and υ ∈ R

n
+ are vectors of Lagrange multipliers, also called

dual variables, and y = (s, z, π, υ, λ, x) is a column vector of all variables.

Under the linear independence constraint qualification, a local minimum of

(3.2) is a stationary point of the Lagrangian function, which must satisfy the first

order KKT conditions:

∇sL = π − µkS
−1e = 0 (3.4a)

∇zL = υ − µkZ
−1e = 0 (3.4b)

∇πL = x+ s− x = 0 (3.4c)

∇υL = x+ z − x = 0 (3.4d)

∇λL = g(x) = 0 (3.4e)

∇xL = ∇f(x) +∇g(x)λ− π + υ= 0 (3.4f)

where S = diag(s1, . . . , sn), Z = diag(z1, . . . , zn) and e = (1, 1, . . . , 1).

The system of nonlinear equations (3.4) can be conveniently expressed as:

Sπ − µke = 0 (3.5a)

Zυ − µke = 0 (3.5b)

x+ s− x = 0 (3.5c)

x+ z − x = 0 (3.5d)

g(x) = 0 (3.5e)

∇f(x) +∇g(x)λ− π + υ = 0 (3.5f)

In order to solve (3.5), an iteration of the primal-dual IP method applies a

single iteration of the Newton’s method for root finding, then calculates the step

length along the Newton’s direction, updates the variables and reduces the barrier

parameter µk. The iterative process ends when the primal and dual infeasibilities,

along with the complementarity gap, are smaller than specified tolerances. The

main steps of the primal-dual IP method are given by Algorithm 3.1.
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1. Set k = 0, choose µ0 > 0 and an initial point y0 that satisfies the strict

positivity conditions (s0, z0, π0, υ0) > 0.

2. Apply the Newton’s method to (3.5) at the current point,

∇2
yyL(yk;µk)∆y = −∇yL(yk;µk),

and solve the resulting linear system for the Newton’s direction ∆y.

3. Calculate the step length αk in the Newton’s direction and obtain the new

estimate of the solution by yk+1 = yk + αk∆y.

4. If yk+1 satisfies the convergence criteria, then STOP. Otherwise, set

k ← k + 1, reduce the barrier parameter µk and return to step 2.

Algorithm 3.1: Primal-dual IP method to solve (1.1).

3.1.1 Computation of the Search Directions

Even though the system resulting from the KKT conditions (3.5) is nonlinear, its

solution is usually approximated by a single iteration of the Newton’s method. In

fact, the Newton’s direction is used to obtain an approximation ỹ(µk) for the local

solution y(µk) as the barrier parameter is reduced. If the Newton’s method were

applied until convergence and µk reduced in infinitesimal steps, the trajectory de-

scribed by these points would be called the primal-dual barrier trajectory and would

converge to y∗ as µk → 0 [1].

By taking the first order terms of the Taylor series expansion for (3.5) around

yk, the following sparse linear system is obtained:




Π 0 S 0 0 0

0 Υ 0 Z 0 0

I 0 0 0 0 −I

0 I 0 0 0 I

0 0 0 0 0 ∇g(x)T

0 0 −IT IT ∇g(x) ∇2
xxL(y)







∆s

∆z

∆π

∆υ

∆λ

∆x




= −




Sπ − µke

Zυ − µke

x+ s− x

x+ z − x

g(x)

∇f(x) +∇g(x)λ− π + υ




(3.6)

where Π = diag(π1, . . . , πn), Υ = diag(υ1, . . . , υn), and∇2
xxL(y) is the Hessian of the
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Lagrangian function, defined as

∇2
xxL(y) = ∇

2f(x) +

m∑

i=1

λi∇
2gi(x) (3.7)

It is important to observe that the computation of the Hessian ∇2
xxL(y) can

be time-consuming if it is not efficiently implemented. An efficient procedure to

evaluate the Hessian ∇2
xxL(y) for OPF problems is described in [59].

3.1.2 Update of Variables

The new estimates for the primal and dual variables are calculated as:

xk+1 = xk + αP
k ∆x

sk+1 = sk + αP
k ∆s

zk+1 = zk + αP
k ∆z

λk+1 = λk + αD
k ∆λ

πk+1 = πk + αD
k ∆π

υk+1 = υk + αD
k ∆υ

(3.8)

where αP
k ∈ (0, 1] and αD

k ∈ (0, 1] are the primal and dual step lengths, respectively.

The maximum step lengths that are possible to be taken in the Newton’s direc-

tion are determined by:

αP
k = min

{
1, γ ×min

i

{
−ski
∆si

∣∣∣∆si < 0,
−zki
∆zi

∣∣∣∆zi < 0

}}
(3.9a)

αD
k = min

{
1, γ ×min

i

{
−πk

i

∆πi

∣∣∣∆πi < 0,
−υki
∆υi

∣∣∣∆υi < 0

}}
(3.9b)

The scalar γ ∈ (0, 1) is a safeguard factor to ensure that the next point will

satisfy the strict positivity conditions (typically, γ = 0.99995).

The use of different step lengths allows the search to be performed in both

the primal and dual spaces and this is one of the advantages of primal-dual IP

methods. Moreover, for practical problems, the use of distinct primal and dual

steps usually results in faster convergence. In NLP problems, however, the primal

and dual variables are also correlated by the dual feasibility condition (3.5f), which
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does not allow rigorously distinct steps in the primal and dual spaces. Therefore,

an unique (identical) step length should be used to update the primal and dual

variables, which is calculated as:

αP
k = αD

k ← min
{
αP
k , α

D
k

}
(3.10)

In practice, different and equal step lengths have both been used [59]. However,

preliminary numerical experiments on OPF problems have indicated that algorithms

based on equal steps are more likely to fail when a problem is nearly infeasible, that

is, when the feasible region is almost empty. In such a case, the primal step αP
k tends

to zero as the variables approach the boundaries.

3.1.3 Reducing the Barrier Parameter

The scheme used to reduce the barrier parameter µk is an extension of those suc-

cessfully implemented for LP and QP IP methods[33]. At iteration k, the residual of

the complementarity conditions, called complementarity gap, is obtained as follows:

ρk = sTk πk + zTk υk (3.11)

If the iterative process converges to an optimal solution, then ρk → 0. The

relation between ρk and µk is implicitly defined in equations (3.5a), (3.5b) and

(3.11) in the following form:

n∑

i=1

siπi +

n∑

i=1

ziυi = 2nµk = ρ (3.12)

from which µk can be rewritten as a function of the complementarity gap:

µk+1 = σ
ρk
2n

(3.13)

where σ is a reduction factor on average complementarity gap. The parameter σ ∈

[0, 1] is called centering parameter and the KKT system (3.5) defines a step towards

a point at the barrier trajectory. On the other hand, σ = 0 provides a step in the

pure Newton’s direction, which is called affine-scaling direction. In computational

practice, in order to balance the two objectives of reducing µk while improving the

centrality of the iterates, σ is chosen within the open interval (0, 1).
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3.1.4 Convergence Criteria

The convergence criteria for the primal-dual IP method can be established as fol-

lows:

max
{
max

i

{
xi − x

k
i

}
,max

i

{
xki − xi

}
, ‖g(xk)‖∞

}
≤ ǫ1 (3.14a)

‖∇f(xk) +∇g(xk)λ− πk + υk‖∞
1 + ‖xk‖2 + ‖λk‖2 + ‖πk‖2 + ‖υk‖2

≤ ǫ1 (3.14b)

ρk
1 + ‖xk‖2

≤ ǫ2 (3.14c)

If the criteria (3.14a), (3.14b) and (3.14c) are satisfied, then the primal and

dual feasibility conditions, along with the complementarity condition, are all sat-

isfied and the solution point y∗ has precision equal to ǫ1. Typically, the tolerance

values are set to ǫ1 = 10−4 and ǫ2 = 10−2ǫ1.

3.2 The Predictor-Corrector Interior Point Method

The factorization of the coefficient matrix in (3.6) is the most time-consuming task

of an IP algorithm [35, 59]. Therefore, each matrix factorization must be used as

many times as possible before obtaining a new estimate. The predictor-corrector

IP method [34] follows this idea by using the same factorization to calculate two

different directions: the predictor and the corrector. The final direction can be

obtained by the sum of these two directions. By doing that, the method improves

the centrality, allows larger step lengths to be taken and reduces the overall number

of iterations.

The predictor-corrector IP algorithm is obtained by substituting the new point

expression yk+1 = yk +∆y directly into (3.5) to yield the approximation:




Π 0 S 0 0 0

0 Υ 0 Z 0 0

I 0 0 0 0 −I

0 I 0 0 0 I

0 0 0 0 0 ∇g(x)T

0 0 −IT IT ∇g(x) ∇2
xxL(y)







∆s

∆z

∆π

∆υ

∆λ

∆x




= −




Sπ

Zυ

x+ s− x

x+ z − x

g(x)

∇xL(y)




+




µke

µke

0

0

0

0




−




∆S∆π

∆Z∆υ

0

0

0

0




(3.15)
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where ∇xL(y) = ∇f(x) + ∇g(x)λ − π + υ, ∆S = diag(∆s1, . . . ,∆sn), and ∆Z =

diag(∆z1, . . . ,∆zn).

The major difference between systems (3.6) and (3.15) is that the right-hand

side vector cannot be determined beforehand because of the nonlinear ∆-terms

∆S∆π and ∆Z∆υ. The full direction ∆y obtained from (3.15) can be divided into

three components:

∆y = ∆yaf +∆yce +∆yco (3.16)

where each component is determined by one of the three vectors in the right-hand

side of (3.15). These three components of the full direction ∆y can be understood

separately as follows:

∆yaf : is the affine-scaling direction, which is obtained by setting µ = 0 in (3.6).

This direction is determined by the first vector on the right-hand side of

(3.15), that is, it is the solution of the system:




Π 0 S 0 0 0

0 Υ 0 Z 0 0

I 0 0 0 0 −I

0 I 0 0 0 I

0 0 0 0 0 ∇g(x)T

0 0 −IT IT ∇g(x) ∇2
xxL(y)







∆saf

∆zaf

∆πaf

∆υaf

∆λaf

∆xaf




= −




Sπ

Zυ

x+ s− x

x+ z − x

g(x)

∇xL(y)




(3.17)

The affine-scaling direction focuses on reducing the primal and dual infea-

sibilities, and the complementarity gap.

∆yce : is the centering direction, whose length is determined by the barrier param-

eter µk. This direction is defined by the second vector on the right-hand side

of (3.15), that is, by solving the linear system:




Π 0 S 0 0 0

0 Υ 0 Z 0 0

I 0 0 0 0 −I

0 I 0 0 0 I

0 0 0 0 0 ∇g(x)T

0 0 −IT IT ∇g(x) ∇2
xxL(y)







∆sce

∆zce

∆πce

∆υce

∆λce

∆xce




=




µke

µke

0

0

0

0




(3.18)

The centering direction maintains the point sufficiently far from the bound-

aries of the feasible region and ideally near to the barrier trajectory. By
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doing this, the method increases the chance of taking a larger step in the

next iteration.

∆yco : is the corrector direction, which tries to compensate some of the nonlinear-

ities in the affine-scaling direction ∆yaf. The corrector direction is deter-

mined by the third vector on the right-hand side of (3.15), which is found

by solving the following system:




Π 0 S 0 0 0

0 Υ 0 Z 0 0

I 0 0 0 0 −I

0 I 0 0 0 I

0 0 0 0 0 ∇g(x)T

0 0 −IT IT ∇g(x) ∇2
xxL(y)







∆sco

∆zco

∆πco

∆υco

∆λco

∆xco




= −




∆S∆π

∆Z∆υ

0

0

0

0




(3.19)

Clearly, the combination of the directions ∆yaf and ∆yce is given by the solution

of (3.6). However, to deal with the nonlinearities in (3.15), the direction ∆yaf is

obtained separately from and before ∆yce. This furnishes the possibility to calculate

approximations to the barrier parameter µk+1 and to the second order terms ∆S∆π

and ∆Z∆υ.

3.2.1 The Predictor Step

In order to find an step that approximates the solution of (3.15), it is enough to

solve (3.17) for the affine-scaling direction:




Π 0 S 0 0 0

0 Υ 0 Z 0 0

I 0 0 0 0 −I

0 I 0 0 0 I

0 0 0 0 0 ∇g(x)T

0 0 −IT IT ∇g(x) ∇2
xxL(y)







∆saf

∆zaf

∆πaf

∆υaf

∆λaf

∆xaf




= −




Sπ

Zυ

x+ s− x

x+ z − x

g(x)

∇f(x) +∇g(x)λ− π + υ




(3.20)

The direction ∆yaf is used in two distinct ways: (a) to approximate the ∆-

terms on the right-hand side of (3.15); and (b) to dynamically estimate the barrier

parameter µk+1.

A new estimate µk+1 is calculated by considering (3.9) to determine the step αaf
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if the direction ∆yaf were applied:

αP
af = min

{
1, γ ×min

i

{
−ski
∆saf

i

∣∣∣∆saf
i < 0,

−zki
∆zaf

i

∣∣∣∆zaf
i < 0

}}
(3.21a)

αD
af = min

{
1, γ ×min

i

{
−πk

i

∆πaf
i

∣∣∣∆πaf
i < 0,

−υki
∆υaf

i

∣∣∣∆υaf
i < 0

}}
(3.21b)

Once the primal and dual steps in the affine-scaling direction are available, a

new estimate for the complementarity gap is obtained as:

ρaf = (sk + αP
af∆saf)

T (πk + αD
af∆πaf) + (zk + αP

af∆zaf)
T (υk + αD

af∆υaf) (3.22)

Finally, the approximation µaf for µk+1 is calculated as:

µaf = min

{(
ρaf

ρk

)2

, σ

}
ρaf

2n
(3.23)

This procedure chooses µaf small if the direction ∆yaf produces a significant

decrease on the complementarity gap, that is, if ρaf ≪ ρk. Otherwise, it defines µaf

to be a larger value.

3.2.2 The Corrector Step

Instead of calculating the combined direction ∆yce +∆yco and then add it to ∆yaf,

the full direction ∆y is obtained in one step by solving the following system:




Π 0 S 0 0 0

0 Υ 0 Z 0 0

I 0 0 0 0 −I

0 I 0 0 0 I

0 0 0 0 0 ∇g(x)T

0 0 −IT IT ∇g(x) ∇2
xxL(y)







∆s

∆z

∆π

∆υ

∆λ

∆x




= −




Sπ − µafe+∆Saf∆πaf

Zυ − µafe +∆Zaf∆υaf

x+ s− x

x+ z − x

g(x)

∇f(x) +∇g(x)λ− π + υ




(3.24)

Both the predictor and the corrector steps make use of the same matrix factor-

ization. Therefore, the additional computational effort in the predictor-corrector

method, when compared to the pure primal-dual approach, is the solution of an ad-

ditional linear system to calculate ∆yaf and the computation of the approximation
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µaf. The benefits of using this method usually compensate the extra effort and it

generally converges faster than the pure primal-dual variant. The main steps of the

predictor-corrector IP method are given by Algorithm 3.2.

1. Set k = 0, choose µ0 > 0 and a start point y0 that satisfies the strict

positivity conditions (s0, z0, π0, υ0) > 0.

2. Form the matrix ∇2
yyL(yk;µk) and obtain its factorization.

(a) Solve the system (3.17) for the direction ∆yaf, calculate αaf from

(3.21) and obtain µaf from (3.22).

(b) Solve the system (3.24) for the full direction ∆y.

3. Calculate the step length αk along the direction ∆y and obtain the new

point as yk+1 = yk + αk∆y.

4. If yk+1 satisfies the convergence criteria, then STOP. Otherwise, set k ←

k + 1, reduce the barrier parameter µk, and return to step 2.

Algorithm 3.2: Primal-dual predictor-corrector IP method to solve (1.1).

3.3 Infeasibility Detection and Handling

Optimization algorithms can fail to converge due to several factors, including pa-

rameter selection, initialization, ill-conditioning and scaling problems. Particularly,

primal-dual IP point methods may present some difficulties to converge when the

iterates are badly centered, which motivated the development of the multiple cen-

trality corrections method [35].

An important aspect when solving an optimization problem is to efficiently de-

tect and handle infeasibility. A problem is called infeasible when it has an empty

feasible set, that is, there is no point that can simultaneously satisfy all constraints.

For primal-dual IP methods, an infeasible simple bound can cause its respective

slack variable to rapidly decrease to zero (limited by the logarithmic barrier) in an

attempt to become negative. As a direct consequence of very small slack variables,

the primal step calculated from (3.9) decreases and the algorithm fails to converge.

At the same time, the corresponding Lagrange multiplier increases very fast, pro-

viding the sensitivity that an active constraint has been found.

In [21, 66, 67], a methodology to detect and handle infeasible simple bounds

is proposed in the context of the solution of OPF problems by IP methods. This
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approach starts to monitor infeasible bounds whenever the primal step αP
k becomes

too small. That is, if αP
k ≤ ξ (typically, ξ = 0.0001) than problem (1.1) is possibly

infeasible and the algorithm defines the following sets of lower and upper infeasible

bounds:

IL = {i | ski ≤ τ1 and πk
i ≥ τ2, i = 1, 2, . . . , n} (3.25)

IU = {i | zki ≤ τ1 and υki ≥ τ2, i = 1, 2, . . . , n} (3.26)

All the infeasible bounds must be included in the set IL ∪ IU , whereas the

feasible ones must not be wrongly included. The methodology to handle infeasible

bounds consists in solving the following modified problem:

min f(x) + c
∑

i∈I
L

wi(xi − xi)
2 + c

∑

i∈I
U

wi(xi − xi)
2

subject to g(x) = 0

xi ≤ xi ≤ xi, ∀i 6∈ IL ∪ IU

(3.27)

where c is a large positive number that balances the minimization of the objective

function against the minimization of the violation of infeasible bounds and wi’s are

weights that differentiates the relative importance among these bounds.

A practical formulation of (3.27) keeps all the original constraints in order

to preserve the structure of the Newton’s system, but it changes the levels of the

infeasible simple bounds so as to relax them. Therefore, the following problem is

solved:

min f(x) + c
∑

i∈I
L

wi(xi − xi)
2 + c

∑

i∈I
U

wi(xi − xi)
2

subject to g(x) = 0

x̃ ≤ x ≤ x̃

(3.28)

where x̃i = xi − δi if i ∈ IL and x̃i = xi + δi if i ∈ IU , and δi’s are the values by

which the infeasible bounds are relaxed.
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3.3.1 Primal-Dual Logarithmic Indicators

As discussed in [68], the identification of subgroups of variables can be used in

several ways to obtain computational advantage. Extending the idea to infeasible

problems, infeasibility is monitored by using logarithmic primal-dual indicators,

which are functions of the slack variables and the Lagrange multipliers, defined as

follows:

PDLL
i = log

(
ski
πk
i

)
(3.29)

PDLU
i = log

(
zki
υki

)
(3.30)

When k goes to infinity, the limits of PDLU
i and PDLU

i behave as follows:

lim
k→∞

PDLL
i (s

k
i , π

k
i ) = lim

k→∞
PDLU

i (z
k
i , υ

k
i ) =




−∞, i ∈ Z

+∞, i /∈ Z
(3.31)

where Z is the index set of active bound constraints.

Similarly to strong active simple bound constraints, infeasible bounds might

accomplish the behavior predicted by (3.31). Figure 3.1 illustrates the profile of

the PDLU
i indicator for an infeasible OPF problem before and after the activation,

at iteration 9, of the infeasibility handling algorithm proposed in [67].
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Figure 3.1: Primal-Dual logarithmic indicators of infeasibility.
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It can be seen from Figure 3.1 that once the feasibility has been restored by

relaxing the infeasible simple bounds, the primal-dual logarithmic indicators do not

return to their previous levels. In fact, when the algorithm converges, subgroups of

active and inactive constraints can be easily identified. The main observation is that

the absolute value of the primal-dual logarithmic indicator for an active constraint

is much smaller and different from that found for an infeasible constraint.

3.4 Final Remarks

This chapter presented the pure primal-dual and the primal-dual predictor-corrector

IP methods for NLP. The solution of the Newton’s system (3.6) is by far the most

time consuming task of these algorithms. Thus, to obtain efficient IP codes, it is im-

portant to concentrate efforts to improve the factorization, forward and backward

solves. In this work, the solution of the linear system (3.6) is performed by MAT-

LAB’s built-in functions mldivide() and lu(), which invariably use well-established

routines from the Linear Algebra PACKage (LAPACK) [69] or the UMFPACK [70]

packages.

Together with the multiple centrality corrections approach [36], the pure primal-

dual and the primal-dual predictor-corrector IP methods have been successfully ap-

plied to OPF problems. An important practical feature of these optimization tech-

niques is that the number of iterations does not seem to be very sensitive to the

network size or to the number of control variables [8, 59], so they are suitable for

large-scale OPF problems.

Infeasibility detection and handling is one of the most important resources of an

optimization program. Particularly, in the context of the solution by primal-dual IP

methods, the corresponding primal-dual logarithmic indicator can readily provide

the information on whether or not an infeasible constraint is found.
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Chapter 4

Trust Region Methods

O
PF PROBLEMS lie in the class of nonlinear nonconvex constrained optimiza-

tion. As power systems increase and operate heavy loaded, the solution of

these problems become more difficult. Moreover, locally convergent algo-

rithms may fail to converge when the initial point is not near to a solution. For-

tunately, globally convergent techniques can be used to obtain convergence from

remote starting points.

Trust region methods are one of the globalization techniques that has been

used to provide global convergence properties to a great diversity of algorithms.

According to [71], the idea of defining a region of trust for the search direction was

first suggested for nonlinear least squares problems and later extended to general

unconstrained optimization. Thus, it is worth to briefly describe the formulation

and solution techniques for these problems before introducing the basic concepts of

trust region.
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4.1 Nonlinear Least Squares Problems

Nonlinear least squares problems can be stated in the following classical form:

min f(x) =
1

2

m∑

i=1

r2i (x) =
1

2
‖r(x)‖2 (4.1)

where r : Rn 7→ R
m is continuously differentiable and ‖ · ‖ denotes the ℓ2 vector

norm. These problems became very popular because of their special features when

compared to general unconstrained problems. The first and second order deriva-

tives of f(x) can be expressed in terms of the residual functions ri(x) as follows:

∇f(x) = ∇r(x)r(x) (4.2)

∇2f(x) = ∇r(x)∇r(x)T +

m∑

i=1

ri(x)∇
2ri(x) (4.3)

It is clear from (4.2) that the gradient ∇f(x) can be obtained if the first deriva-

tive of each function ri(x) is easily calculated. Furthermore, by knowing the gradi-

ent∇r(x), the first part of the Hessian∇2f(x) is immediately available. The second

part of the Hessian is expected to be small when the residuals ri are small or when

each function ri is nearly linear (‖∇2ri(x)‖ ≈ 0).

The Gauss-Newton method [1], which can be understood as a modification

of the Newton’s method with line search, exploit those features by neglecting the

second order term from (4.3), that is, ∇2f(x) ≈ ∇r(x)∇r(x)T , and by defining a

search direction dGN

k as:

∇r(xk)∇r(xk)
TdGN

k = −∇r(xk)r(xk) (4.4)

Interestingly, the Gauss-Newton direction dGN

k can also be obtained from the

linear model function r(xk + p) ≈ r(xk) + ∇r(xk)
Td, by substituting it into the

expression f(x) = 1
2
‖r(x)‖2 and minimizing over d. That is, dGN

k is the solution of

the linear least squares problem

min
1

2
‖r(xk) +∇r(xk)

Td‖
2

(4.5)

which is also equivalent to replace the objective function in (4.1) by the quadratic
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model

mk(d) =
1

2
‖r(xk)‖

2 + [∇r(xk)r(xk)]
T d+

1

2
dT∇r(xk)∇r(xk)

Td (4.6)

On the other hand, instead of using a line search procedure, the Levenberg-

Marquardt method [1, 72, 73] applies a trust region strategy. The main idea of this

approach is to restrict the search to a region around the current iterate xk within

the quadratic model mk(d) in (4.6) closely approximates the original nonlinear ob-

jective function f(x). For a spherical trust region, the problem to be solved at each

iteration is:

min
1

2
‖r(xk)‖

2 + [∇r(xk)r(xk)]
T d+

1

2
dT∇r(xk)∇r(xk)

Td

subject to ‖d‖ ≤ ∆k

(4.7)

where ∆k > 0 is the radius of the trust region. When the solution d∗ of (4.7)

reaches the trust region, that is, ‖d∗‖ = ∆k, then it also solves the following equality

constrained problem:

min
1

2
‖r(xk)‖

2 + [∇r(xk)r(xk)]
T d+

1

2
dT∇r(xk)∇r(xk)

Td

subject to ‖d‖ = ∆k

(4.8)

If d∗ is a local minimum of (4.8), then there is a strictly positive Lagrange

multiplier λ∗ ∈ R+ that satisfy the KKT first order optimality conditions:

[
∇r(xk)∇r(xk)

T + λI
]
d = −∇r(xk)r(xk) (4.9a)

‖d‖ −∆k = 0 (4.9b)

Otherwise, if d∗ remains strictly inside the trust region, that is, ‖d∗‖ < ∆k, then

d∗ = dGN is the solution of the unconstrained problem (4.5) and λ∗ = 0, which

represents an inactive constraint. Finally, the constraints ‖d‖ − ∆k ≤ 0 and λ ≥

0 can be combined as a single complementarity condition and the KKT first order

optimality conditions for problem (4.7) become:

[
∇r(xk)∇r(xk)

T + λI
]
dLM = −∇r(xk)r(xk) (4.10a)

λ (‖dLM‖ −∆k) = 0 (4.10b)
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It is important to mention that both Gauss-Newton and Levenberg-Marquardt

methods use the same Hessian approximations, thus their local convergence prop-

erties are similar. In addition, these methods are expected to perform poorly on

large-residual problems, in which the second-order part of the Hessian ∇2f(x) in

(4.3) is too significant to be ignored. For a detailed discussion about these two

methods the reader is referred to [1].

4.2 Trust Region Methods for Unconstrained Opti-

mization

Consider general unconstrained optimization problems of the following form:

min f(x) (4.11)

where f : R
n 7→ R is a nonlinear function that is assumed to be at least twice

continuously differentiable. An approximation for the minimizer x∗ of (4.11) can

be determined by means of the Taylor series expansion around the point xk

f(xk + d) ≈ f(xk) +∇f(xk)
Td+

1

2
dT∇2f(xk)d (4.12)

which is a local quadratic model of f(x). If xk is in the vicinity of x∗, then Newton

type methods are expected to converge with quadratic rate. However, if xk is far

from the solution of (4.11), locally convergent methods can fail to converge as the

model (4.12) no longer preserves the curvature characteristics of f(x). Thus, to

globalize the convergence of the algorithm, a trust region constraint is added and

the trust region problem to be solved at each iteration is:

min mk(d) = f(xk) +∇f(xk)
Td+

1

2
dTHkd

subject to ‖d‖ ≤ ∆k

(4.13)

where Hk ∈ R
n×n is the Hessian ∇2f(xk) or some approximation to it.

When defining a trust region method, the first issue that deserves attention is

the way the trust region radius ∆k is chosen and how it directly affects the per-

formance of the approach. If the chosen radius is too small, the model accurately

approximates the objective function but only small steps can be taken. Otherwise,
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if a large radius is chosen, the trust region constraint would not limit the progress

of the algorithm. However, the minimizer of the quadratic model may be far from

the minimizer of the objective function, thus the radius has to be reduced and a

new attempt of the algorithm must be performed.

The most common way of choosing the trust region radius is based on the

agreement between the model function mk(d) and the objective function f(xk) at

the previous iteration. For a given step dk, we define the ratio

̺k =
ar(dk)

pr(dk)
=
f(xk)− f(xk + dk)

mk(0)−mk(d)
(4.14)

where the numerator is called the actual reduction and the denominator is the pre-

dicted reduction. Observe that since dk is obtained by minimizing the model mk(d)

within a region that includes d = 0, the predicted reduction will always be nonneg-

ative. Thus, if ̺k is negative, the new objective value f(xk + dk) is larger than the

current value fk, so the step dk must be rejected. On the contrary, if ̺k is close to 1,

there is a good agreement between the model mk(d) and the function f(x) over this

step. In this case, the step dk is accepted and it is safe to expand the trust region for

the next iteration. If ̺k is positive but significantly smaller than 1, the trust region

is not altered. Additionally, if ̺k is close to zero or negative, we shrink the trust

region by reducing ∆k at the next iteration [1].

4.2.1 The Cauchy Point

Although in principle the solution of problem (4.13) is the goal, for global conver-

gence purposes it is sufficient to find an approximate solution dk that lies within

the trust region and gives a sufficient reduction in the model. The sufficient reduc-

tion can be quantified in terms of the Cauchy point, which is simply the minimizer

of mk(d) along the steepest descent direction −∇f(xk), subject to the trust region

constraint.

Before analyzing the Cauchy point, it is convenient to define the vector

dsk = −∆k

∇f(xk)

‖∇f(xk)‖
(4.15)

that represents the maximum point along the steepest descent direction subject to
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the trust region bound (note that ‖dsk‖ = ∆k). The Cauchy point is then defined as

dck = τkd
s
k (4.16)

where τk ∈ (0, 1] is the minimizer of mk(τd
s
k) constrained to the trust region bound,

that is, the solution of the following problem:

min mk(τd
s
k) = f(xk) +∇f(xk)

T (τdsk) +
1

2
(τdsk)

THk(τd
s
k)

subject to ‖τdsk‖ ≤ ∆k

(4.17)

The unconstrained minimizer of (4.17) can be determined by taking the first

derivative of mk(τd
s
k) with respect to τ , as follows:

d

dτ
mk(τd

s
k) = ∇f(xk)

Tdsk + τkd
s
k
THkd

s
k = 0 ∴ τk = −

∇f(xk)
Tdsk

dsk
THkd

s
k

(4.18)

By substituting (4.15) into (4.18) and remembering that ∇f(xk)
T∇f(xk) =

‖∇f(xk)‖
2, the result is:

τk =
‖∇f(xk)‖

3

∆k∇f(xk)
THk∇f(xk)

(4.19)

To clearly understand the effect of the trust region constraint on the objective

function of problem (4.17), two curvature cases should be considered. Firstly, if

∇f(xk)
THk∇f(xk) ≤ 0, the function mk(τd

s
k) is concave and, therefore, it decreases

monotonically with τ from its maximum point at∇f(xk) = 0 (see Figure 4.1). Thus,

τk is simply the largest value that satisfies the trust region bound, that is, τk = 1.

On the other hand, if ∇f(xk)
THk∇f(xk) > 0, then mk(τd

s
k) is a convex quadratic

function in τ , so τk is either the unconstrained minimizer (4.19) or the boundary

value τk = 1 (see Figure 4.2).
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mk(τd
s
k)

dck

−∇fk

Figure 4.1: Concave function mk(τd
s
k).

dck

dck+1

mk(τd
s
k)

−∇fk

Figure 4.2: Convex function mk(τd
s
k).

In summary, we have

dck =





min

{
dsk,−

∇f(xk)
T∇f(xk)

∇f(xk)
THk∇f(xk)

∇f(xk)

}
, if ∇f(xk)

THk∇f(xk) > 0;

dsk , otherwise.

(4.20)

A trust region method will be globally convergent if the steps dk attain a suf-

ficient reduction in the model mk(d) that is at least some fixed multiple of the

decrease obtained by the Cauchy step dck at each iteration. Despite of being very

simple to implement and inexpensive to calculate, the approximation provided by

the Cauchy point is based on the steepest decent method, which implies linear rates

of convergence. Thus, in order to achieve faster convergence, practical algorithms

start by computing the Cauchy point and then try to improve on it.

According to [1], an improvement strategy is often designed so that the un-

constrained minimum dBk = −H−1
k ∇f(xk) of the quadratic model mk(d) is used

whenever Hk is positive definite and ‖dBk ‖ ≤ ∆k. Additionally, when Hk is the exact

Hessian or a quasi-Newton approximation, this procedure is expected to achieve

superlinear convergence. The next section briefly introduces one of the possible

improvements on the Cauchy point, called the dogleg method [74].

4.2.2 The Dogleg Method

In order to better understand the dogleg method, it is important to analyze the

influence of the trust region radius ∆k on the solution d∗ of (4.13). When the

radius is small relative to dBk , the constraint ‖d‖ ≤ ∆k ensures that the quadratic
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term in mk(d) has little effect on the solution of (4.13). That is, the curvature

information of the model function mk(d) is not very significant when searching

within a small vicinity, so a linear approximation to it can be used. In this case, one

simple approximation to the step d∗ that solves (4.13) is the maximum point along

the steepest descent direction subject to the trust region bound, which is calculated

by (4.15). On the other hand, when ∆k assumes intermediate values, the solution

d∗ typically follows a curved trajectory such as the one illustrated in Figure 4.3.

dogleg path

−∇f(xk)

trust region

dUk

dBk

exact trajectory

Figure 4.3: Exact trajectory and dogleg path (Adapted from [1]).

In order to find an estimate solution to (4.13), the dogleg method replaces the

curved trajectory for d∗ with a path consisting of two line segments. The first line

segment goes from the current point to the minimizer of mk(d) along the steepest

descent direction, which is given by

dUk = −
∇f(xk)

T∇f(xk)

∇f(xk)
THk∇f(xk)

∇f(xk) (4.21)

The second line segment goes from dUk to dBk , as illustrated in Figure 4.3. The

dogleg path can be rigorously denoted by d̃(τ) for τ ∈ [0, 2], where

d̃(τ) =





τdUk , 0 ≤ τ ≤ 1

dUk + (τ − 1)
(
dBk − d

U
k

)
, 1 ≤ τ ≤ 2

(4.22)

The dogleg approach chooses d to minimize the model mk(d) along this path,

subject to the trust region constraint.

It is important to observe that d̃(τ) intersects the trust region boundary at ex-
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actly one point if and only if ‖dBk ‖ ≥ ∆k. In addition, since Hk is supposed to be

positive definite, the model mk(d) is a decreasing function along the dogleg path.

Thus, the chosen value of d will be at dBk if the unconstrained minimizer is strictly

inside the trust region. Otherwise, the value of d is chosen as the point of intersec-

tion of the dogleg path and the trust region boundary. In this case, the value of τ is

computed by solving the following scalar quadratic equation:

‖dUk + (τ − 1)(dBk − d
U
k )‖

2 = ∆2
k (4.23)

Note that if the exact Hessian∇2f(xk) is available and positive definite, one can

simply setHk = ∇2f(xk) and follow the procedure above to find the Newton-dogleg

step.

4.3 Trust Region Methods for Constrained Optimiza-

tion

In this work, most of the attention is devoted to general nonlinear programming

problems of the form (1.1):

min f(x)

subject to g(x) = 0

x ≤ x ≤ x

Instead of directly solving the nonlinear problem (1.1), trust region methods

generate steps with the help of a quadratic model. As seen in previous sections,

these methods define a region with radius ∆k around the current point xk within

which they trust the model to be an adequate representation of (1.1). The related

trust region problem can be defined as follows:

min f(xk) +∇f(xk)
Td+

1

2
dTHkd (4.24a)

subject to g(xk) +∇g(xk)
Td = 0 (4.24b)

x ≤ xk + d ≤ x (4.24c)

‖d‖ ≤ ∆k (4.24d)
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where Hk is the Hessian matrix of the Lagrangian function associated with the

problem (1.1), that is,

Hk = ∇
2f(xk) +

m∑

i=1

λki∇
2gi(xk), (4.25)

and λi is the Lagrange multiplier associated to the constraint gi(x) = 0.

Problem (4.24) is not a QP problem due to the Euclidean norm used in the trust

region constraint. As discussed in [1], there has not been much research on the

relative performance of methods that use trust regions of different shapes on large

problems. Additionally, other norms such as the ℓ1 norm and the infinity norm offer

no obvious advantages for small-medium unconstrained problems, but they may

be useful for constrained ones. For instance, to overcome the difficulty and turn

problem (4.24) into a QP problem, Souza et al. [53] used the infinity norm instead

of the Euclidean to rewrite the trust region subproblem as follows:

min f(xk) +∇f(xk)
Td+

1

2
dTHkd (4.26a)

subject to g(xk) +∇g(xk)
Td = 0 (4.26b)

x− xk ≤ d ≤ x− xk (4.26c)

‖d‖∞ ≤ ∆k (4.26d)

As described by [53], since ‖d‖∞ = maxi |di|, the constraints (4.26c) and

(4.26d) on step d can be combined into a single simple bound constraint, so that

the problem (4.26) can be rewritten as:

min f(xk) +∇f(xk)
Td+

1

2
dTHkd (4.27a)

subject to g(xk) +∇g(xk)
Td = 0 (4.27b)

max{δ,−∆k} ≤ d ≤ min{δ,∆k} (4.27c)

where δ = x− xk and δ = x− xk.

Problem (4.27) could be directly solved by a general optimization algorithm for

QP. However, the trust region constraint (4.27c) could limit the step d in a way such

that problem (4.27) becomes infeasible, that is, there may be no step d that satisfies

both the equality constraint (4.27b) and the trust region constraint (4.27c). Several

approaches were proposed to resolve the possible conflict between satisfying the
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linearizations of the original constraints and the additional trust region constraint

[41]. The next section presents the Byrd-Omojokun method.

4.3.1 The Byrd-Omojokun Method

In order to resolve possible inconsistencies with constraints (4.27b) and (4.27c),

the Byrd-Omojokun method [40] divides problem (4.27) into two subproblems,

which are known as vertical and horizontal subproblems.

4.3.1.1 Vertical Subproblem

The vertical subproblem is defined as follows:

min
1

2
‖g(xk) +∇g(xk)

Tv‖
2

(4.28a)

subject to max{δ,−ξ∆k} ≤ v ≤ min{δ, ξ∆k} (4.28b)

where ξ ∈ (0, 1) is a reduction factor of the trust region (typically ξ = 0.8).

By ignoring the constant term g(xk)
Tg(xk) in the objective function, problem

(4.28) can be rewritten as follows:

min [∇g(xk)g(xk)]
T v +

1

2
vT∇g(xk)∇g(xk)

Tυ (4.29a)

subject to max{δ,−ξ∆k} ≤ v ≤ min{δ, ξ∆k} (4.29b)

The aim of the vertical subproblem is to find a vertical step vk within the reduced

trust region ξ∆k that minimizes the violation of the equality constraint (4.27b).

4.3.1.2 Horizontal Subproblem

After solving (4.29) for the step υk, the full step dk is obtained by solving the

horizontal subproblem:

min ∇f(xk)
Td+

1

2
dTHkd (4.30a)

subject to ∇g(xk)
Td = ∇g(xk)

Tvk (4.30b)

max{δ,−∆k} ≤ d ≤ min{δ,∆k} (4.30c)
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It must be observed that problem (4.30) is always feasible, once d = vk is a

solution for (4.30b) and ‖vk‖ ≤ ξ∆k.

4.3.1.3 Merit Function

Once dk has been calculated, a merit function is used to decide whether or not this

step sufficiently decreases the objective function f(x). Based on [53], the ℓ2 merit

function is considered:

ψ(x, η) = f(x) + η‖g(x)‖ (4.31)

where η > 0 is a penalty parameter that weighs the constraint satisfaction against

minimization of the objective function. In [41], the author furnishes a strategy to

update the value of the penalty parameter. However, some preliminary experiments

on OPF problems have shown that a typical value (for example, η = 2) can be used

without significantly changing the performance of the Byrd-Omojokun method.

Given a step dk, we define the merit function model

ψ̃(d, η) = f(xk) +∇f(xk)
Td+

1

2
dTHkd+ η‖g(xk) +∇g(xk)

Td‖ (4.32)

and calculate the predicted reduction in the merit function (4.31), which is defined

as

pr(dk) = ψ̃(0, η)− ψ̃(dk, η)

= −∇f(xk)
Tdk −

1

2
dTkHkdk + η(‖g(xk)‖ − ‖g(xk) +∇g(xk)

Tvk‖)
(4.33)

Similarly, the actual reduction is

ar(dk) = ψ(xk, η)− ψ(xk + dk, η)

= f(xk)− f(xk + dk) + η(‖g(xk)‖ − ‖g(xk + dk)‖)
(4.34)

As previously discussed for unconstrained optimization, given a step dk, we

calculate the reduction ratio as follows:

̺k =
ar(dk)

pr(dk)
=
ψ(xk, ηk)− ψ(xk + dk, ηk)

ψ̃(0, ηk)− ψ̃(dk, ηk)
(4.35)

Since the merit function (4.31) is nonsmooth and suffers from Maratos effect
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[1], it may perform poorly on some problems. However, this can be avoided by com-

puting a second-order correction term that is added to dk, which yields the following

trial step:

dsoc = dk −∇g(xk)
(
∇g(xk)

T∇g(xk)
)−1

g(xk + dk) (4.36)

4.3.1.4 Trust Region Radius Update

Based on [41, 53], if ̺k ≈ 1 and, consequently, a step dk is accepted, the decision

of increasing the trust region can be taken as

∆k+1 =






min
{
κ1‖dk‖∞, ∆̄

}
, if ̺k ≥ ̺;

min
{
κ2‖dk‖∞, ∆̄

}
, if ̺ ≤ ̺k ≤ ̺;

∆k, otherwise;

(4.37)

where κ1 > κ2 > 1 and the scalars ̺ and ̺ ∈ (0, 1) are lower and upper reference

values for the ratio ̺k, respectively, and ∆̄ is the maximum trust region size. On the

other hand, if the step dk is rejected (that is, ̺k ≈ 0 or negative), we simply shrink

the trust region as ∆k+1 = γ∆k, for γ ∈ (0, 1). Note that, as problem (4.27) was

defined using the infinity norm, the definition of (4.37) may use this norm as well.

As an alternative to ‖dk‖∞ in (4.37), the value of the current trust region radius ∆k

can also be used [1].

4.3.2 Sequential ℓ1 Quadratic Programming

Since (4.27) may have incompatible constraints, another way of attempting to

address it is to build the corresponding exact ℓ1 penalty function [54] and solve the

following modified problem:

min f(xk) +∇f(xk)
Td+

1

2
dTHkd+ ηk

m∑

i=1

|g(xk) +∇g(xk)
Td|

subject to max{δ,−∆k} ≤ d ≤ min{δ,∆k}

(4.38)

where ηk is a positive and sufficiently large penalty parameter.

The idea of using the exact ℓ1 penalty function to overcome the possible incon-

sistencies among the linearized constraints, in the context of the solution of SQP

problems with the addition of a trust region, was first suggested by Fletcher [54].
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The resulting algorithm is known in the literature as the sequential ℓ1 quadratic

programming (Sℓ1QP) approach. According to [1], the difficulties of choosing ap-

propriate values of ηk caused nonsmooth penalty methods to fall out of favor during

the 1990s and also stimulated the development of filter methods, which do not re-

quire the choice of a penalty parameter. In spite of that, in the recent years, new

approaches for updating the penalty parameter seem to have overcome these diffi-

culties [2, 56]. As will be further discussed in this work, we propose a simple and

effective procedure to update the ℓ1 penalty parameter based on the values of the

problem’s Lagrange multipliers.

The objective function in (4.38) is nonsmooth, so it may be difficult to han-

dle the derivative discontinuities in such a minimization. Fortunately, this is not

necessary and, as discussed in [1], (4.38) is equivalent to the smooth problem

min f(xk) +∇f(xk)
Td+

1

2
dTHkd+ ηk

m∑

i=1

(pi + qi) (4.39a)

subject to g(xk) +∇g(xk)
Td = p− q, (p, q) ≥ 0 (4.39b)

max{δ,−∆k} ≤ d ≤ min{δ,∆k} (4.39c)

where (p, q) ∈ R
m are nonnegative elastic variables.

Problem (4.39) is feasible because one can always choose a point within the lim-

its (4.39c) and set the pair (p, q) in a way that the constraints (4.39b) and (4.39c)

are satisfied. Additionally, to determinate the acceptance of a step dk, the natural

choice is the ℓ1 merit function

ψ(x, η) = f(x) + ηk

m∑

i=1

|gi(x)| (4.40)

and the corresponding ℓ1 merit function model

ψ̃(d, η) = f(xk) +∇f(xk)
Td+

1

2
dTHkd+ ηk

m∑

i=1

|g(xk) +∇g(xk)
Td| (4.41)

Similarly to the Byrd-Omojokun approach, the predicted and the actual reduc-

tions can be defined as functions of the ℓ1 merit function (4.40) and of its respective

model (4.41).
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4.4 Final Remarks

This chapter presented the main concepts of trust region methods. Due to the

possibility of defining infeasible trust region problems when solving constrained

optimization, several approaches have been proposed to handle this difficulty [41].

The Byrd-Omojokun and the Sℓ1QP are examples of techniques to impose the trust

region constraint without generating inconsistent problems. The former method

divides the solution into two subproblems, the vertical and the horizontal, that are

solved until convergence. The latter approach uses the exact ℓ1 penalty function

to overcome possible inconsistencies among the linearized constraints. These tech-

niques are used in this work, along with the primal-dual IP methods discussed in

Chapter 3, to devise globally convergent trust region IP algorithms.
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Chapter 5

Trust Region Methods for Improved

Performance

T
HE MAIN contributions of the Thesis are presented in this chapter, in which

algorithms based on trust region IP methods are investigated. These algo-

rithms are expected to be globally convergent and to succeed even if the

initial point is far from the solution, a situation that can cause locally convergent

methods fail to converge. With this aim, two trust region techniques are proposed.

Firstly, a modified Byrd-Omojokun approach is detailed. Then, based on the works

of Fletcher [54], Gould et al. [56] and Byrd et al. [2], a trust region IP method

based on the exact ℓ1 penalty function is described.
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5.1 Modified Byrd-Omojokun Approach

Motivated by the recent works of Souza et al. [53, 75] regarding a trust region

Byrd-Omojokum globalization strategy, this section describes some ideas to im-

prove its performance in the context of the solution of trust region subproblems

via IP methods. As discussed in [53], both vertical (4.29) and horizontal (4.30)

subproblems can be rewritten in the following general form:

min bTw +
1

2
wTAw (5.1a)

subject to MTw − c = 0 (5.1b)

w ≤ w ≤ w (5.1c)

The vertical subproblem (4.29) is solved by defining w = v, c = [] and M = [],

along with

b = ∇g(xk)g(xk) (5.2a)

A = ∇g(xk)∇g(xk)
T

(5.2b)

w = max{δ,−ξ∆k} (5.2c)

w = min{δ, ξ∆k} (5.2d)

Similarly, to solve the horizontal subproblem (4.30), the assumed values are

w = d and

b = ∇f(xk) (5.3a)

A = Hk (5.3b)

c = ∇g(xk)
Tvk (5.3c)

M = ∇g(xk) (5.3d)

w = max{δ,−∆k} (5.3e)

w = min{δ,∆k} (5.3f)

Since both vertical and horizontal problems have the same general formulation,

very similar optimization routines can be written to solve these problems. Despite

of the great diversity of available QP techniques to solve (5.1), the methodologies

developed in this work focus on the aspects of the solution via primal-dual IP meth-
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ods.

It must be observed that the same IP algorithms described in Chapter 3 for NLP

can be used to solve the QP problem (5.1). In fact, the major difference is that the

Gradient and Hessian matrices of the nonlinear functions f(x) and g(x) are constant

for inner trust region iterations.

5.1.1 Direct Solution of the Trust Region Problem

In order to illustrate the idea, consider the very simple case shown in Figure 5.1, in

which c(x) : R → R is a one-dimensional continuously differentiable function and

mx
k
(x) = c(xk) + c′(xk) (x− xk) is the first order Taylor polynomial approximation

of it around xk.

y = c(x)

xkxk+1

mx
k
(x)

c(xk)

c(xk+1)

y

x

mx
k+1

(x)

Figure 5.1: Taylor polynomial approximation of c(x) around xk.

As shown in Figure 5.1, the Taylor linearization mx
k
(x) becomes zero at xk+1.

However, the value c(xk+1) of the function c(x) evaluated at xk+1 is still not null.

Such as in the Newton’s method to find roots of a real-valued function, the error

between the function’s value c(xk+1) and its approximation mx
k
(xk+1) is O(d2), in

which d = xk+1 − xk. Subsequent linearizations mx
k+1

(x), mx
k+2

(x), . . . , mx
k+n

(x)

would give smaller errors as d tends to zero and the process converges to the root.

A similar procedure is used here to derive the proposed modification on the Byrd-

Omojokun method.

When the value of objective function of the vertical subproblem reaches zero, it

means that a feasible point d = v∗ of (4.27) has been found and that the constraints
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(4.27b) and (4.27c) do not define an empty feasible set. However, it is important

to observe that xk+1 = xk + v∗ is not necessarily a feasible point to the original

NLP problem. Firstly, note that from the Taylor series approximation the following

equality holds:

g(xk+1) = g(xk) +∇g(xk)
Td+O(‖d‖2) (5.4)

Additionally, considering that d = v∗ is feasible for (4.27), then

g(xk) +∇g(xk)
Tv∗ = 0 ⇒ g(xk+1) is O(‖v∗‖2) (5.5)

which means that the original nonlinear equality constraint g(x) = 0 evaluated at

xk+1 may be only nearly satisfied.

Assuming that for practical purposes the second order term in (5.5) is negligible,

that is, v∗ is small and g(xk+1) = O(‖v∗‖2) ≈ 0, subsequent Taylor linearizations of

the nonlinear constraints around this feasible point will be compatible since d = 0

will always be a minimizer of (4.27). Therefore, supposing that from this point on

a sequence of feasible points can be found, the trust region problem (4.27) can be

directly solved and, by dropping the term f(xk) of (4.27a), the constants of the QP

problem (5.1) are defined as

b = ∇f(xk) (5.6a)

A = Hk (5.6b)

c = −g(xk) (5.6c)

M = ∇g(xk) (5.6d)

w = max{δ,−∆k} (5.6e)

w = min{δ,∆k} (5.6f)

along with w = d.

As seen before for NLP, the minimizer of the QP problem (5.1) can be obtained
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by primal-dual IP methods by solving the following problem:

min bTw +
1

2
wTAw − µk

n∑

i=1

(ln si + ln zi) (5.7a)

subject to MTw − c = 0 (5.7b)

w − w + s = 0, s > 0 (5.7c)

w − w + z = 0, z > 0 (5.7d)

where s ∈ R
n
+ and z ∈ R

n
+ are slack variables and µk is the barrier parameter.

After all the algebraic manipulations described in Chapter 3, the Newton’s sys-

tem that needs to be solved in each iteration is as follows:




Π 0 S 0 0 0

0 Υ 0 Z 0 0

I 0 0 0 0 −I

0 I 0 0 0 I

0 0 0 0 0 MT

0 0 −I I M A







∆s

∆z

∆π

∆υ

∆τ

∆w




= −




Sπ − µke

Zυ − µke

w − w + s

w − w + z

MTw − c

Aw + b+Mτ − π + υ




(5.8)

where Υ and Π are diagonal matrices with Υii = υi and Πii = πi, respectively, and

τ ∈ R
m.

The proposed globally convergent algorithm firstly solves the vertical subprob-

lem using the suggestion by Souza et al. [53], in which w0 = 0. If a feasible point

is not found, the horizontal subproblem is started at the minimizer of the vertical

subproblem, i.e., w0 = vk. On the other hand, if the vertical subproblem converges

to a minimum equal to zero, then the trust region problem (4.27) is solved instead.

The dimensions of the Newton’s systems solved in each iteration of the vertical

and the horizontal subproblems are 5n and 5n + m, respectively. Thus, consider-

ing that the order of the linear system (5.8) is 5n + m, the direct solution of the

trust region problem can reduce the total algorithm run time up to nearly 50% if a

feasible point is found during the solution of the first vertical subproblem [53]. Fur-

thermore, it must be observed that switching from solving alternately the vertical

and horizontal subproblems to directly solve the trust region problem is straight-

forward. Once the vertical objective approaches zero, the horizontal subproblem

can be transformed into the trust region problem by simply changing the level of

the equality constraints (5.1b) from c = ∇g(xk)
Tvk to c = −g(xk). The modified
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Byrd-Omojokun algorithm is summarized in Algorithm 5.1.

1. Set k = 0, choose ∆0, η and ξ.
2. Solve the vertical subproblem for vk by using (5.2).

3. If ‖g(xk) +∇g(xk)
Tvk‖

2
≤ ǫv, then solve the full trust region subproblem

by using (5.6). Otherwise, solve the horizontal subproblem by using (5.3).

4. Calculate the reduction ratio ̺k by (4.35).
5. If ̺k ≥ 0.1, then update xk+1 = xk + dk and choose ∆k+1 ≥ ∆k by (4.37).

Otherwise, decrease the trust region radius ∆k+1 = γ∆k and set xk+1 = xk.

6. If xk+1 satisfies the convergence criteria of the original nonlinear problem
(1.1) then END. Otherwise, set k ← k + 1 and return to step 2.

Algorithm 5.1: Modified Byrd-Omojokun method to solve (1.1).

5.1.1.1 Tolerance Criteria on Inner Iterations and Early Stop

The globalization strategy used in this work consists in solving a sequence of QP

subproblems until the convergence criteria of the original NLP problem have been

accomplished. Thus, another way to reduce the total computational effort of the

Byrd-Omojokun method could be to approximately solve each QP subproblem, re-

ducing the number of inner trust region iterations and, consequently, the number

of matrix factorizations.

According to [76, 77], there is a trade-off between computational cost per sub-

problem and the number of overall trust region iterations. The more accurate the

subproblem solver, the fewer overall iterations required. In addition, for a given

optimization problem, an improved performance may be obtained by comparing

the cost of evaluating the function and its derivatives against the cost of the linear

algebra concerning the resolution of the trust region problem (4.27).

Regarding the solution of OPF problems, the cost of solving the Newton’s system

is much higher than the cost of evaluating the first and second derivatives. There-

fore, numerical simulations are performed to analyze the behavior of the modified

Byrd-Omojokun method when using less restrictive tolerance criteria on inner iter-

ations.
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5.2 The Sℓ1QP Method

The main goal of this research is to develop a globally convergent algorithm that

is competitive in run time when compared to the Byrd-Omojokun approach. The

modified Byrd-Omojokun technique aims at reducing the computational effort by

directly solving the trust region problem (4.27) once the vertical objective attains

zero. Similarly to the Byrd-Omojokun approach, the Sℓ1QP method [54] can also

handle inconsistencies among the linearized constraints in (4.27). This technique

uses an exact ℓ1 penalty function to incorporate the equality constraints (4.27b)

into the objective function. The resulting trust region problem (4.38) is a box con-

strained minimization of a nonsmooth function, which can be transformed into a

smooth function by the addition of elastic variables.

This section details the solution of the Sℓ1QP problem (4.39) via primal-dual

IP methods for QP. In order to address (4.39), these methods solve the following

modified problem:

min f(xk) +∇f(xk)
Td+

1

2
dTHkd+

+

m∑

i=1

[ηk (pi + qi)− µk (ln pi + ln qi)]− µk

n∑

i=1

(ln si + ln zi) (5.9a)

subject to g(xk) +∇g(xk)
Td− p+ q = 0, (p, q) > 0 (5.9b)

w − d+ s = 0, s > 0 (5.9c)

d− w + z = 0, z > 0 (5.9d)

where w and w are defined by equations (5.3e) and (5.3f), respectively, s ∈ R
n
+ and

z ∈ R
n
+ are slack variables, p ∈ R

m
+ and q ∈ R

m
+ are elastic variables, µk > 0 is the

barrier parameter and ηk is the ℓ1 penalty parameter. The strict positivity conditions

on the slack variables (s, z) > 0 and also on the elastic variables (p, q) > 0, are

implicitly handled by controlling the step length during the update.

Under the linear independence constraints qualification, if d∗ is a local minimum

of (5.9), then there are vectors of Lagrange multipliers τ ∗ ∈ R
m, π∗ ∈ R

n and
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υ∗ ∈ R
n that satisfy the KKT first order optimality conditions:

∇sL = − µkS
−1e+ π = 0 (5.10a)

∇zL = − µkZ
−1e+ υ = 0 (5.10b)

∇pL = ηkem − µkP
−1em − τ = 0 (5.10c)

∇qL = ηkem − µkQ
−1em + τ = 0 (5.10d)

∇πL = w − d+ s = 0 (5.10e)

∇υL = d− w + z = 0 (5.10f)

∇τL = g(xk) +∇g(xk)
Td− p+ q = 0 (5.10g)

∇dL = ∇f(xk) +Hkd+∇g(xk)τ − π + υ= 0 (5.10h)

where P and Q are diagonal matrices with Pii = pi and Qii = qi, and e ∈ R
n and

em ∈ R
m are column vectors of all ones. The system of equations (5.10) can be

rearranged as:

rsπ = Sπ − µe = 0 (5.11a)

rzυ = Zυ − µe = 0 (5.11b)

rp = P (ηkem − τ)− µkem = 0 (5.11c)

rq = Q(ηkem + τ)− µkem = 0 (5.11d)

rs = w − d+ s = 0 (5.11e)

rz = d− w + z = 0 (5.11f)

rτ = g(xk) +∇g(xk)
Td− p+ q = 0 (5.11g)

rd = ∇f(xk) +Hkd+∇g(xk)τ − π + υ= 0 (5.11h)

By applying the Newton’s method to (5.11), the following linear system is ob-

tained:




Π 0 0 0 S 0 0 0

0 Υ 0 0 0 Z 0 0

0 0 Γ 0 0 0 −P 0

0 0 0 Θ 0 0 Q 0

I 0 0 0 0 0 0 −I

0 I 0 0 0 0 0 I

0 0 −I I 0 0 0 ∇g(xk)
T

0 0 0 0 −I I ∇g(xk) Hk







∆s

∆z

∆p

∆q

∆π

∆υ

∆τ

∆d




= −




rsπ

rzυ

rp

rq

rs

rz

rτ

rd




(5.12)

54



where Γ and Θ are diagonal matrices with Γii = ηk−τi and Θii = ηk+τi, respectively.

The dimensions of the Newton’s systems solved in each iteration of the vertical

and the horizontal subproblems are 5n and 5n +m, respectively, which nearly cor-

responds to the cost of a single outer iteration of the Byrd-Omojokun method. On

the other hand, the dimension of the linear system (5.12) for the Sℓ1QP method is

5n+ 3m. Therefore, the linear system (5.12) has extra 2m rows and columns when

compared to the system solved in the horizontal subproblem in each iteration. How-

ever, the Sℓ1QP approach solves a single linear system whereas the Byrd-Omojokun

method solves both the vertical and the horizontal subproblems per iteration. Addi-

tionally, it is very important to observe that the coefficient matrix in (5.12) is sparse

and the time complexity of its factorization involves factors such as ordering and

fill-in [78]. For a good sparse matrix algorithm, the time required for sparse ma-

trix operation depends on and should be proportional to the number of arithmetic

operations on nonzero elements.

Despite being slightly larger than the matrices formed for the vertical and hori-

zontal subproblems in the Byrd-Omojokun method, the coefficient matrix in (5.12)

has only 6m more nonzero elements, which correspond to the diagonal block matri-

ces that come from equalities (5.11c), (5.11d) and (5.11g) for the elastic variables.

Thus, considering that in our OPF algorithm the matrix factorizations are handled

by the MATLAB’s built-in function mldivide(), which can efficiently perform oper-

ations on sparse matrices, the computational cost of solving (5.12) is expected to

be smaller than the cost of solving similar linear systems associated with the ver-

tical and horizontal subproblems in the Byrd-Omojokun technique. Furthermore,

the sparsity pattern of the coefficient matrix in (5.12) for the Sℓ1QP approach is

essentially the same of that found in analogous matrices during the solution of the

vertical and horizontal subproblems by the primal-dual IP method.

5.2.1 Solving the Reduced System

Alternatively, ∆y = (∆s,∆z,∆p,∆q,∆π,∆υ,∆τ,∆d) can be calculated by an equiv-

alent reduced system that is obtained as follows. From the fifth and sixth linear

equations in (5.12):

∆s = ∆d− w + d− s (5.13)

∆z = −∆d − d+ w − z (5.14)
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By substituting (5.13) and (5.14) in the first and second equations of (5.12):

∆π = −S−1Π∆d+ S−1 [µke +Π (w − d)]

= −S−1Π∆d+ r∆π (5.15)

∆υ = Z−1Υ∆d+ Z−1 [µke+Υ (d− w)]

= Z−1Υ∆d+ r∆υ (5.16)

By replacing (5.15) and (5.16) in the last equation of (5.12):

(
S−1Π+ Z−1Υ+Hk

)
∆d+∇g(xk)∆τ = −r∆d, (5.17)

where r∆d = ∇f(xk) +Hkd +∇g(xk)τ − π + υ − r∆π + r∆υ. Additionally, from the

third and fourth equations in (5.12):

∆p = −p + Γ−1µke + Γ−1P∆τ (5.18)

∆q = −q +Θ−1µke−Θ−1Q∆τ (5.19)

By replacing (5.18) and (5.19) in the seventh equation of (5.12):

∇g(xk)
T∆d −

(
Γ−1P +Θ−1Q

)
∆τ = −r∆τ , (5.20)

where r∆τ = g(xk) +∇g(xk)
Td+ (Θ−1 − Γ−1)µke.

Finally, using (5.17) and (5.20), the following reduced equivalent system is

obtained: [
S−1Π+ Z−1Υ+Hk ∇g(xk)

∇g(xk)
T Λ

](
∆d

∆τ

)
= −

(
r∆d

r∆τ

)
(5.21)

where Λ = −Γ−1P −Θ−1Q is a diagonal matrix.

Thus, ∆y is obtained by solving (5.21) for ∆d and ∆τ , and then substituting ∆d

in (5.13), (5.14), (5.15) and (5.16) to get ∆s, ∆z, ∆π and ∆υ, respectively, along

with replacing ∆τ in (5.18) and (5.19) to obtain ∆p and ∆q, in this order.

Analogous algebraic manipulations can be carried out with the equations of

the linear system resulting from the horizontal subproblem in the Byrd-Omojokun

method to achieve a system of the same dimension of (5.21), as follows:

[
S−1Π+ Z−1Υ+Hk ∇g(xk)

∇g(xk)
T 0

](
∆d

∆τ

)
= −

(
r∆d

r̃∆τ

)
(5.22)
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where r̃∆τ = ∇g(xk)(d− vk).

Firstly, note that linear system (5.21) has up to m more nonzero elements,

which corresponds to the diagonal matrix Λ. It is easy to perceive then, by compar-

ing the coefficient matrices in the equivalent reduced linear systems (5.21) (for the

Sℓ1QP technique) and (5.22) (for the horizontal subproblem of Byrd-Omojokun

technique), that the matrix factorization efforts (by far the most time consuming

task in an IP algorithm) to solve (5.21) and (5.22) are exactly the same. The mi-

nor difference in the processing time consists in the little extra effort to compute

∆p and ∆q by equations (5.18) and (5.19), respectively, which by involving only

simple diagonal matrices and vector operations, is of complexity O(n) operations

only. Clearly, one outer iteration of the Sℓ1QP algorithm costs less than one itera-

tion of Byrd-Omojokun technique, when the formulated trust region subproblems

are solved by the primal-dual IP algorithm for QP.

5.2.2 Decreasing the Barrier Parameter

Adapting the idea previously discussed in Chapter 3, the complementarity gap can

be obtained as follows:

ρk = sTk πk + zTk υk + pTk (ηkem − τk) + qTk (ηkem + τk) (5.23)

The relation between ρk and µk is implicitly defined in equations (5.11a),

(5.11b), (5.11c), (5.11d) and (5.23) in the following form:

n∑

i=1

siπi +

n∑

i=1

ziυi +

m∑

i=1

pi(ηk − τi) +
m∑

i=1

qi(ηk + τi) = (2n + 2m)µk = ρ (5.24)

from which µk can be rewritten as a function of the complementarity gap:

µk+1 = σ
ρk

2n+ 2m
(5.25)

Once the primal and dual steps in the affine-scaling direction are available, the

complementarity gap (5.23) can also be used in the predictor-corrector IP method

to obtain the approximation µaf for µk+1.
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5.2.3 Initialization and ℓ1 Penalty Parameter Update

In addition to the standard initialization, the elastic variables p and q are started

by expressions based on the complementarity conditions (5.11c) and (5.11d), re-

spectively:

pi0 =
µ0

η0 − τ
i
0

(5.26)

qi0 =
µ0

η0 + τ i0
(5.27)

Once the penalty parameter allows only strictly positive values, its initial value

η0 should be different from the initial guess for the Lagrange multipliers τ0 to avoid

ill-posed expressions. According to [1], the ℓ1 merit function (4.40) has a local

minimizer if there is an η∗ that is greater than the greatest optimal value for the La-

grange multipliers associated with the equality and inequality constraints of (4.39),

that is,

η∗ = max{|τ ∗|, π∗, υ∗} (5.28)

In this work, the penalty parameter is chosen adaptively as a function of the

current value ηk and of the infinity norm of Lagrange multipliers related to the

equality constraints. With the exception of the first trust region iteration, in which

an user defined value η0 must be set for the ℓ1 penalty parameter, each subsequent

initialization is performed based on the following heuristic:

ηk = max{ηk−1, 3‖τk−1‖∞} (5.29)

Additionally, the penalty parameter is also allowed to vary within the same

trust region iteration. In this case, however, only a small increase is permitted, as

follows:

ηkj = max{ηkj−1
, ‖τkj−1

‖∞} (5.30)

in which the subscript k in ηkj denotes the number of the outer iteration whereas

the subscript j denotes the number of the inner iteration.

Although the update strategy of ηk depends on the value of the largest Lagrange

multiplier and this may cause numerical instability if the multiplier becomes too

large, the practical performance of this strategy on the used class of OPF problems

has demonstrated to be fairly good. In addition, as (4.39) is solved by IP methods,

the current estimate τk for τ ∗ is readily available. The proposed Sℓ1QP approach is
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summarized in Algorithm 5.2.

1. Do k = 0, choose ∆0, η0 and ξ.
2. Solve (4.39) for dk by using the primal-dual IP method and update the ℓ1

penalty parameter by (5.29) and (5.30).
3. Calculate the reduction ratio ̺k by (4.35) with ψ(x, η) and ψ̃(d, η) given by

(4.40) and (4.41), respectively.
4. If ̺k ≥ 0.1, then update xk+1 = xk + dk and choose ∆k+1 ≥ ∆k by (4.37).

Otherwise, decrease the trust region radius ∆k+1 = γ∆k and do xk+1 = xk.

5. If xk+1 satisfy the convergence criteria of the original NL problem (1.1)
then END. Otherwise, do k ← k + 1 and return to step 2.

Algorithm 5.2: Proposed Sℓ1QP method to solve (1.1).

5.3 Final Remarks

This chapter presented some modifications on the Byrd-Omojokun method in order

to reduce its computational cost. The objective is to reduce the computation time of

the Byrd-Omojokun algorithm proposed in [53]. The main idea is to not solve the

vertical subproblem after its objective has become zero, for which can be assumed

that the trust region problem is feasible. Hence, from this point on, the modified

approach solves directly the trust region problem (4.27).

The dimensions of the Newton’s systems solved in each iteration of the vertical

and the horizontal subproblems are 5n and 5n +m, respectively. Thus, to directly

solve the trust region problem can reduce by nearly half the total algorithm run-

ning time. Additionally, it must be observed that the horizontal subproblem (4.30)

has the same form of the trust region problem (4.27), so switching between these

problems is very simple.

The implementation details of the Sℓ1QP method was also described. This

methodology is able to handle inconsistent constraints and is an alternative to the

Byrd-Omojokun method. Additionally, by considering that the linear system (5.12)

of order 5n + 3m is solved in each iteration, this method can be faster than the

Byrd-Omojokun approach for the same number of trust region outer iterations.
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Chapter 6

Numerical Experiments

I
N THE previous chapters globally convergent trust region IP methods were pre-

sented and the corresponding algorithms were fully described. In this chapter,

the main results and a discussion about the application of these methods on

OPF problems are given. To test the proposed methodologies, the classical active

losses minimization problem is used along with the IEEE test systems up to 300-bus

and two distribution networks called REAL-A and REAL-R.

It is important to clarify that the numerical experiments intend to show the con-

vergence characteristics of the two proposed methods: Modified Byrd-Omojokun

and Sℓ1QP. As previously mentioned, both techniques have a reduced time com-

plexity when compared to the Byrd-Omojokun method. Therefore, for one trust

region (outer) iteration, these two methodologies present improved performances

in terms of algorithm run time.
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6.1 Test Systems and General Parameters

The algorithms were implemented using the following IP and trust region general

parameters: µ0 = 0.1, γ = 0.9995, σ = 0.2, ǫ1 = 10−4, ∆0 = 2, ∆max = 5, ξ =

0.8 and η0 = 2. The test systems and the active losses minimization problems

dimensions are shown in Table 6.1. The active and reactive systems loads, the

initial and minimum active losses and the percentage reduction are presented in

Table 6.2.

Table 6.1: Test systems and active losses minimization problems dimensions.

System |N | |G| |C| |T | n m

IEEE-30 30 6 5 4 75 60
IEEE-57 57 7 5 17 143 114

IEEE-118 118 54 12 9 311 236
IEEE-300 300 69 23 35 727 600
REAL-A 47 1 13 12 120 94

REAL-R 42 1 11 5 101 84

Table 6.2: Active and reactive loads, initial and minimum active losses and per-
centage reduction.

System PL [MW] QL [MW] Lossini [MW] Lossmin [MW] ↓ [%]

IEEE-30 283.40 126.20 17.64 17.34 1.68

IEEE-57 1250.80 336.40 27.86 24.34 12.62
IEEE-118 3668.00 1438.00 132.86 118.03 11.16

IEEE-300 23247.00 7788.00 408.31 378.02 7.42
REAL-A 91.25 38.08 9.65 9.33 3.36
REAL-R 80.59 37.44 2.54 2.52 0.75

6.2 Primal-Dual IP Algorithms

The primal-dual methods described in Chapter 3 are locally convergent and, conse-

quently, are expect to behave poorly when applied to a wide range of initial points.

To elucidate the difference between local and global convergence characteristics of

the used methods, the simulations were performed with four types of initialization:

(I) power flow, (II) flat start (i.e., V 0
i = 1 and θ0i = 0), (III) middle point of lim-

its (e.g., V 0
i = (V min

i + V max
i )/2), and (IV) 100 random points within limits. The
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random points were generated using the MATLAB’s built-in function rand() accord-

ing to a uniform distribution. The numerical results for the primal-dual (PD) and

primal-dual predictor-corrector (PC) methods considering the first three initializa-

tions are shown in Table 6.3.

Table 6.3: Number of iterations for IP methods with three different initializations.

System
(I) (II) (III)

PD PC PD PC PD PC

IEEE-30 12 8 13 10 13 9

IEEE-57 13 8 13 8 12 8
IEEE-118 15 9 19 16 13 8
IEEE-300 18 15 21 17 19 18

REAL-A 14 9 Fail Fail 27 Fail
REAL-R 12 7 12 9 12 8

Tables 6.4 and 6.5 present a descriptive statistics for the PD and PC methods, re-

spectively, including the number of converged cases (CC), the mode (Mo), the mean

(k) and the standard deviation (σ), along with the minimum (kmin) and maximum

(kmax) number of outer iterations for 100 randomly generated starting points.

Table 6.4: Descriptive statistics for the PD method using initialization (IV).

System CC Mo k σ kmin kmax

IEEE-30 100 14 13.56 0.50 13 14
IEEE-57 100 13 13.07 0.26 13 14
IEEE-118 100 15 14.97 0.44 14 16

IEEE-300 80 20 21.27 2.50 18 30
REAL-A 40 24 20.77 3.85 15 29

REAL-R 85 14 16.81 3.13 13 30

Table 6.5: Descriptive statistics for the PC method using initialization (IV).

System CC Mo k σ kmin kmax

IEEE-30 100 9 9.68 0.99 8 15

IEEE-57 100 9 9.04 0.82 8 12
IEEE-118 100 10 10.36 0.85 9 14
IEEE-300 67 20 20.46 3.39 15 30

REAL-A 17 11 18.53 6.54 11 30
REAL-R 82 11 15.37 5.27 9 30

For most of the experiments, the PC method produces a reduction in the number
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of iterations required to converge. In addition, the results show that both primal-

dual techniques respond similarly for initialization (IV). It can be inferred from

Tables 6.4 and 6.5 that the test systems IEEE-300, REAL-A and REAL-R are more

difficult to solve than the other three IEEE networks. Specifically, the PD and the

PC methods presented an inferior performance on the REAL-A test system. It is

also important to observe from Tables 6.4 and 6.5 that, besides guaranteeing only

local convergence, both primal-dual methods converged for all starting points on

IEEE-30, IEEE-57 and IEEE-118 test systems.

The PD and PC methods were also submitted to simulations in which the loads

of the test systems were increased in way to obtain feasible, but highly nonlinear,

cases. Table 6.6 presents the numerical results.

Table 6.6: Number of iterations for IP methods for increased load cases and initial-
izations (I), (II) and (III).

System
(I) (II) (III) Loss [MW]

↓ [%]
PD PC PD PC PD PC Ini. Fin.

IEEE-30 11 8 13 9 12 7 27.36 26.30 3.87

IEEE-57 14 9 14 9 13 8 60.43 55.36 8.39
IEEE-118 17 14 18 12 16 11 221.77 202.97 8.48

IEEE-300 17 13 21 16 21 12 444.93 409.46 7.97
REAL-A 14 10 Fail Fail 27 Fail 9.96 9.57 3.92
REAL-R Fail Fail Fail Fail Fail Fail 2.57 2.54 1 1.17 1

6.3 Trust Region IP Algorithms

This section presents the main results obtained with the developed trust region

IP methods. The generated QP problems were solved using both the PD and PC

algorithms with equal primal and dual steps. Numerical results obtained with an

implementation of the Byrd-Omojokun method derived from [53] are also provided

with the objective of comparison with the devised trust region procedures. Besides,

except where the contrary is expressly stated, the trust region subproblems are

solved by the PD IP method.

1 Results obtained from the trust region IP algorithms.
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6.3.1 Trust Region Problems Solved by the PD Algorithm

Table 6.7 shows the number of outer iterations required until convergence by the

Byrd-Omojokun (BO), the Modified Byrd-Omojokun (MBO) and the Sℓ1QP methods

for initializations (I), (II) and (III) using the PD algorithm. The number of the first

outer iteration of the MBO algorithm, for which the vertical objective has become

nearly zero, is provided within parentheses.

Table 6.7: Number of iterations for initializations (I), (II) and (III) with trust region

problems solved by the PD method.

System
(I) (II) (III)

BO MBO Sℓ1QP BO MBO Sℓ1QP BO MBO Sℓ1QP

IEEE-30 5 5(1) 6 4 4(1) 7 6 6(1) 6
IEEE-57 5 5(1) 6 7 7(1) 8 3 3(1) 3
IEEE-118 4 4(1) 4 6 6(2) 6 4 4(2) 6

IEEE-300 10 11(1) 11 11 11(2) 15 16 15(2) 17
REAL-A 4 4(1) 6 14 Fail 7 12 Fail 6
REAL-R 2 2(2) 3 4 4(3) 4 3 3(2) 3

General convergence characteristics of the considered trust region methods can

be inferred. Firstly, with the exception of the IEEE-300, the number of trust region

iterations does not seem to be influenced by the size of the test systems. In fact,

depending on which method is used, the number of outer iterations required by the

IEEE-118 can be smaller than the needed by the IEEE-30. Secondly, the BO method

performed poorly on the REAL-A test system for initializations (II) and (III), which

may explain the failure of convergence for the MBO method. Also, the performance

of the Sℓ1QP technique in terms of number of outer iterations has not significantly

changed and the method converged for all three initializations.

Table 6.8 details the convergence process of the MBO algorithm for the IEEE-

57 system using flat start. The vertical objective (4.28a) becomes smaller than the

tolerance ǫv = 10−9 at iteration 1, which indicates that the solution of the first

vertical subproblem is a feasible point to (4.27) and the routine switches to the

MBO algorithm. Table 6.8 shows the value of the vertical objective evaluated at

computed points d = wk of (4.27). The total algorithm run time was 3.0s instead of

the 4.6s taken by the BO method, which represents a reduction of about 35%.

Tables 6.9, 6.10 and 6.11 present a descriptive statistics for the BO, the MBO

and the Sℓ1QP methods, respectively, for 100 randomly generated starting points.
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Table 6.8: Convergence process of the MBO method for the IEEE-57 test system

with (II).

k
Infeasibility Residuals

∆k ρk f(x) Vert. Obj.
Primal Dual

0 - - 2 - 0.26 -

1 2.75×10−1 5.17×10−3 2 0.95 24.84 6.38×10−13

2 3.77×10−2 8.33×10−4 2 0.88 24.30 5.11×10−32

3 9.61×10−3 2.76×10−3 2 0.87 24.28 5.14×10−34

4 7.07×10−3 2.41×10−3 2 0.54 24.30 3.85×10−33

5 2.92×10−3 1.01×10−3 2 0.63 24.32 1.48×10−33

6 7.41×10−4 9.69×10−5 2 0.15 24.34 1.45×10−34

7 4.76×10−7 1.77×10−6 2 1.00 24.34 3.06×10−37

Considering the results for the BO technique shown in Table 6.9, almost all runs

were well succeeded, which demonstrate the robustness of this methodology. The

results for the Sℓ1QP method are also comparable to that accomplished by the BO

approach. It can be seen from Table 6.11 that the average number of trust region

iterations for the Sℓ1QP method is only slightly higher than that obtained for the

BO technique for some test systems. Additionally, the modal values of these two

techniques are very close, which indicates that a typical run of the Sℓ1QP method

is expected to be faster than the BO approach. Similarly, the MBO method performs

as well as the BO method with the exception of the REAL-A test system, for which

it converged for only 41 of the 100 starting points. The reasons that lead the MBO

method to fail on the REAL-A are discussed later in this chapter with the help of

primal-dual logarithmic indicators.

Table 6.9: Descriptive statistics for the BO method with PD algorithm using initial-

ization (IV).

System CC Mo k σ kmin kmax

IEEE-30 100 4 5.37 2.50 3 11
IEEE-57 100 6 6.56 1.04 4 10

IEEE-118 100 4 4.00 0.00 4 4
IEEE-300 93 15 14.76 2.11 11 24
REAL-A 85 9 11.31 3.38 7 24

REAL-R 100 4 4.07 0.41 3 5

The BO, the MBO and the Sℓ1QP methods, with the QP problems solved by

the PD IP algorithm, were also submitted to increased load simulations. Table 6.12

present the numerical results, in which “(∗)” means that the MBO algorithm was
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Table 6.10: Descriptive statistics for the MBO method with PD algorithm using

initialization (IV).

System CC Mo k σ kmin kmax

IEEE-30 100 4 5.42 2.54 3 11
IEEE-57 100 6 6.52 0.98 4 9
IEEE-118 100 4 4.00 0.00 4 4

IEEE-300 93 15 14.51 1.85 11 21
REAL-A 41 9 10.76 3.57 7 24

REAL-R 100 4 4.13 0.60 3 8

Table 6.11: Descriptive statistics for the Sℓ1QP method with PD algorithm using
initialization (IV).

System CC Mo k σ kmin kmax

IEEE-30 100 4 4.90 1.64 3 9
IEEE-57 100 6 6.88 1.44 5 10
IEEE-118 100 4 4.00 0.00 4 4

IEEE-300 96 17 17.28 1.60 13 22
REAL-A 95 8 8.89 1.59 6 14
REAL-R 100 5 4.53 0.61 3 6

not activated during the iterative process. The number of outer iterations required

to convergence has not significantly changed from those shown in Table 6.7, which

indicates that the proposed Sℓ1QP algorithm is not very sensitive to the complexity

of the OPF problems. Additionally, despite the fails reported for the Sℓ1QP the for

the REAL-R test system in Table 6.12, a point with primal infeasibilities slightly

greater than tolerance criterion ǫ1 = 10−4 and with final active losses equal to 2.54

MW has been found for each one of the three initializations, which is sufficiently

accurate for practical purposes.

Table 6.12: Number of outer iterations for the BO, the MBO and the Sℓ1QP methods

for increased load cases and initializations (I), (II) and (III).

System
(I) (II) (III)

BO MBO Sℓ1QP BO MBO Sℓ1QP BO MBO Sℓ1QP

IEEE-30 4 4(1) 4 4 4(1) 4 4 4(1) 4
IEEE-57 4 4(2) 4 6 6(2) 5 4 4(3) 6

IEEE-118 6 6(3) 6 6 6(3) 8 5 5(3) 5
IEEE-300 10 11(2) 13 14 13(2) 12 13 13(2) 14
REAL-A 4 4(1) 6 14 Fail 7 12 Fail 5

REAL-R 3 3(∗) Fail 4 4(∗) Fail 3 3(∗) Fail
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Table 6.13 details the convergence process of the Sℓ1QP approach for the IEEE-

57 system with increased loads and power flow initialization. This case clearly

illustrates the update process of the ℓ1 penalty parameter. The initial value was

made equal to η0 = 2, slightly increases within the first outer iteration by using

(5.30) and at the beginning of the second by using (5.29). Furthermore, from the

beginning of the second outer iteration until the process converges, the ℓ1 penalty

parameter remained constant and equal to η0 = 6.0424.

Table 6.13: Convergence process of the Sℓ1QP method for IEEE-57 system with
increased loads and initialization (I).

Iter. Infeasibility Residuals
ηk ̺k ∆k f(xk)Out. Inn. Primal Dual

0 - - 2.0000 - 2 26.25

1 4.28×10+1 3.31×10−2 2.0000

2 9.66×10+0 2.09×10−2 2.0000
...

...
...

...

8 2.25×10−4 3.90×10−6 2.0120
9 2.47×10−2 9.49×10−7 2.0132

10 2.29×10−3 4.79×10−8 2.0141
...

...
...

...
17 6.66×10−9 1.38×10−9 2.0141

1 1.72×10−1 3.11×10−2 2.0141 0.94 4 41.98
2 5.27×10−2 1.54×10−2 6.0424 0.83 4 54.46

3 2.08×10−3 5.12×10−4 6.0424 0.97 4 55.33
4 8.06×10−5 1.68×10−5 6.0424 0.98 4 55.36

Figure 6.1 illustrates the variation of the ℓ1 penalty parameter ηk along with

the primal and dual infeasibilities for the IEEE-118 with increased loads and power

flow initialization. Similarly to the results obtained for the IEEE-57, the ℓ1 penalty

parameter increases within the first two outer iterations and then remains constant

until the process converges.

6.3.2 Trust Region Problems Solved by the PC Algorithm

Table 6.14 presents the number of outer iterations required until convergence by

the BO, the MBO and the Sℓ1QP methods, with the trust region QP problems solved

by the PC algorithm and for initializations (I), (II) and (III). The results, in terms

of outer number of iterations, are very similar to those obtained by solving the

QP subproblems with the PD algorithm. However, when using the PC algorithm, a
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Figure 6.1: Variation of the ℓ1 penalty parameter along with the primal and dual

infeasibilities for IEEE-118 with increased loads.

larger number of failed processes were reported for the IEEE 300-bus. These failures

are mostly related to not converged processes, in which the algorithm reaches the

maximum number of outer iterations kmax = 30. For instance, considering the BO

method and initialization (II), the iterative process shown in Table 6.15 matches the

primal and dual feasibility conditions but does not match the tolerance criterion on

the complementarity condition (ǫ2 = 10−6).

Table 6.14: Number of iterations for initializations (I), (II) and (III) with trust
region problems solved by the PC method.

System
(I) (II) (III)

BO MBO Sℓ1QP BO MBO Sℓ1QP BO MBO Sℓ1QP

IEEE-30 5 5(1) 5 6 6(1) 6 6 6(1) 4
IEEE-57 6 6(1) 6 7 7(1) 7 5 5(1) 3

IEEE-118 4 4(1) 4 6 6(2) 6 4 4(2) 6
IEEE-300 24 Fail 13 Fail Fail 15 Fail Fail 23
REAL-A 6 6(1) 6 18 18(16) 8 13 Fail Fail

REAL-R 2 2(2) 3 4 4(3) 4 3 3(2) 3

Tables 6.16, 6.17 and 6.18 show a descriptive statistics for the BO, the MBO

and the Sℓ1QP methods, respectively, considering the QP trust region subproblems

solved by the PC method and for 100 randomly generated starting points. Anal-

68



Table 6.15: Failed convergence process for the BO method and IEEE 300-bus system

with PC algorithm and initialization (II).
k Primal Infeas. Dual Infeas. Comp. Res. ∆k ̺k f(xk)
0 1.0000×10+0 1.0000×10+0 1.0000×10+0 2.00 0.00 22.6433
1 3.5119×10+0 8.8837×10−3 4.1619×10−3 4.00 0.96 410.8330

2 8.0814×10−1 1.2100×10−1 1.1114×10−9 4.00 0.81 380.6377
3 8.6895×10−2 6.3626×10−3 5.0082×10−9 4.00 0.82 378.0239
4 1.0624×10−2 3.2962×10−3 7.2130×10−9 4.00 0.85 377.9948

5 1.0432×10−2 6.1121×10−4 9.4314×10−9 4.00 0.20 378.0175
6 1.0275×10−2 4.4291×10−4 1.5881×10−9 4.00 0.26 378.0191

7 1.6055×10−3 4.1095×10−4 1.7293×10−5 4.00 0.93 377.9720
8 5.3474×10+0 2.8130×10−2 1.5294×10−5 4.00 524.85 380.4170
9 1.2236×10−1 6.5616×10−3 1.5973×10−9 4.00 0.99 377.7038

10 1.2258×10−3 2.1672×10−3 5.2221×10−9 4.00 0.98 378.0208
11 1.00 -1.65

12 0.25 -1.65
13 5.3515×10+0 2.8211×10−2 1.2026×10−5 0.48 560.23 380.4197
14 1.2287×10−1 6.7383×10−3 1.0855×10−9 0.65 0.99 377.7074

15 1.2539×10−3 2.0191×10−3 6.7900×10−9 0.65 0.98 378.0204
16 0.16 -1.34
17 0.04 -1.38

18 1.1687×10−4 2.2552×10−4 3.9197×10−5 0.08 0.91 378.0205
19 0.02 -12.17

20 4.0353×10−5 5.1631×10−5 2.1684×10−5 0.02 0.77 378.0200
21 5.7320×10−6 8.0996×10−5 1.4496×10−5 0.03 0.82 378.0179
22 0.01 -5.11

23 1.5209×10−5 2.6662×10−5 1.3025×10−5 0.01 0.22 378.0152
24 0.00 0.03
25 2.9696×10−7 5.3899×10−6 1.6215×10−5 0.00 1.00 378.0190

26 3.5404×10−5 7.9761×10−6 1.3676×10−5 0.01 3.62 378.0193
27 1.7797×10−5 2.8586×10−5 9.5544×10−6 0.01 0.52 378.0143

28 7.3548×10−6 2.2162×10−5 1.0278×10−5 0.01 0.76 378.0185
29 0.00 -1.25
30 7.4700×10−7 4.3537×10−6 1.0556×10−5 0.01 1.01 378.0192

ogously to the results obtained with the PD method, the modal values found by

using the MBO and the Sℓ1QP methods are quite similar to those ones of the BO

technique.
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Table 6.16: Descriptive statistics for the BO method with PC algorithm using ini-

tialization (IV).

System CC Mo k σ kmin kmax

IEEE-30 100 4 5.10 1.88 3 11
IEEE-57 100 6 6.52 0.98 4 9
IEEE-118 100 4 4.00 0.00 4 4

IEEE-300 92 13 14.49 2.80 10 30
REAL-A 84 11 12.88 3.35 8 25

REAL-R 98 5 5.45 1.56 3 10

Table 6.17: Descriptive statistics for the MBO method with PC algorithm using
initialization (IV).

System CC Mo k σ kmin kmax

IEEE-30 100 4 5.10 1.88 3 11
IEEE-57 100 6 6.52 0.98 4 9
IEEE-118 100 4 4.00 0.00 4 4

IEEE-300 90 13 14.38 2.33 10 25
REAL-A 45 11 12.40 3.22 8 22
REAL-R 95 5 5.40 1.50 3 10

Table 6.18: Descriptive statistics for the Sℓ1QP method with PC algorithm using
initialization (IV).

System CC Mo k σ kmin kmax

IEEE-30 100 6 5.34 1.02 3 8

IEEE-57 100 6 6.97 1.45 5 10
IEEE-118 100 4 4.01 0.10 4 5
IEEE-300 57 18 20.07 4.03 14 30

REAL-A 91 8 9.77 1.96 7 15
REAL-R 100 5 4.59 0.75 3 7

6.3.3 Performance For Different Sets of Parameters

As discussed in [57], the numerical efficiency of trust region algorithms can be

further improved with a better parameter selection. Therefore, it is relevant to

examine different sets of parameters for the used class of nonlinear OPF problems.

In order to investigate impact of the trust region parameters on the performance

of the proposed algorithms, the initial values of the trust region radius ∆0 and the

penalty parameter η0 were picked from the grid formed by the sets {0.5, 1, 2, 4} and

{0.5, 2, 4, 8}, respectively. Additionally, for the BO and MBO algorithms, the value
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of the reduction factor of the trust region ξ on the vertical subproblem was made

equal to one value of the set {0.4, 0.6, 0.8}. For each set of parameters and for each

test system, 30 random points within limits were used to evaluate the BO, MBO and

Sℓ1QP methods.

The main results for the parametric grid are detailed in Apendix A. Tables

A.1, A.2, A.3, A.4, A.5 and A.6 show the main numerical experiments for the BO

method. In the same way, Tables A.7, A.8, A.9, A.10, A.11 and A.12 show the main

numerical results for the MBO method. Finally, Tables A.13, A.14, A.15, A.16, A.17

and A.18 show the results for the proposed Sℓ1QP method.

General convergence characteristics of the used trust region IP methods can be

gathered from the results of parametric grid. As can be clearly seen from Figure

6.2 and 6.3 for the IEEE-300 test system, the number of CC for the BO and the

MBO methods is not very sensitive to changes in the initial trust region radius ∆0.

Both methods are likely to produce good results when ∆0 values are chosen from

{0.5, 1, 2}. However, for ∆0 = 4, the techniques may present a higher number of

failed processes as the linear and quadratic approximations do not closely repre-

sent the related nonlinear functions. Additionally, regarding the initial value for

the penalty parameter η0 on the BO and MBO techniques, the IEEE-57 test system

presented higher values for the maximum number of outer iterations for η0 = 0.5.

On the other hand, a small ∆0 appear not to be a good choice fo the Sℓ1QP. For

this method, intermediate values, such as ∆0 = 1 or ∆0 = 2, may produce better

results in terms of number of CC. Furthermore, the initialization η0 has no influence

on the performance of the Sℓ1QP method as the algorithm adaptively choose a

proper value for the ℓ1 penalty parameter. Besides, considering the IEEE test systems

up to 118-bus, there is only a small influence of different sets of parameters on the

performance of the used trust region IP algorithms.

6.3.4 Less Restrictive Tolerance Criteria on Inner Iterations

As previously discussed, another way to reduce the total computational effort of

the BO method is to approximately solve each QP subproblem, reducing the overall

number of inner iterations and, consequently, the number of matrix factorizations.

Therefore, additional simulations were carried out by enlarging 10 times the toler-

ance criteria on the primal and dual infeasibilities of the QP subproblems, that is,

from ǫ1 = 10−4 to ǫ1 = 10−3. It is important to clarify that only the tolerance cri-
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Figure 6.2: Boxplot for initial trust region radius ∆0 and the number of CC, for BO
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Figure 6.3: Boxplot for initial trust region radius ∆0 and the number of CC, for
MBO method and IEEE 300-bus.
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teria on the trust region subproblems were relaxed, the tolerance criteria on outer

iterations is still set to ǫ1 = 10−4. The results for initializations (I), (II) and (III) are

shown in Tables 6.19, 6.20 and 6.21, respectively.

Table 6.19: Less restrictive tolerance criterion on inner iterations for BO method

and initialization (I).

System ǫ1 k
Vertical Horizontal

jmin j jmax Total jmin j jmax Total

IEEE-30
0.0001 5 12 12.00 12 60 16 16.60 17 83

0.001 4 10 10.00 10 40 13 13.25 14 53

IEEE-57
0.0001 5 12 12.00 12 60 15 15.80 16 79
0.001 4 11 11.00 11 55 13 14.00 15 70

IEEE-118
0.0001 4 13 13.00 13 52 17 17.50 19 70
0.001 4 11 11.00 11 44 15 15.25 16 61

IEEE-300
0.0001 10 14 14.70 15 147 21 22.40 25 224
0.001 26 12 13.12 14 341 19 22.04 25 573

REAL-A
0.0001 4 12 13.75 15 55 15 16.75 18 67

0.001 Fail - - - - - - - -

REAL-R
0.0001 2 15 15.50 16 31 15 16.50 18 33

0.001 Fail - - - - - - - -

Table 6.20: Less restrictive tolerance criterion on inner iterations for BO method
and initialization (II).

System ǫ1 k
Vertical Horizontal

jmin j jmax Total jmin j jmax Total

IEEE-30
0.0001 4 11 11.75 12 47 12 15.75 18 63
0.001 Fail - - - - - - - -

IEEE-57
0.0001 7 11 11.86 12 83 14 15.43 16 108

0.001 Fail - - - - - - - -

IEEE-118
0.0001 6 13 14.50 22 87 17 19.00 23 114

0.001 6 11 12.50 20 75 14 16.83 21 101

IEEE-300
0.0001 11 14 15.27 24 168 19 21.18 23 233
0.001 Fail - - - - - - - -

REAL-A
0.0001 14 12 15.07 18 211 16 18.14 21 254
0.001 Fail - - - - - - - -

REAL-R
0.0001 4 14 15.50 16 62 15 16.25 18 65
0.001 Fail - - - - - - - -

Significant reductions in the number of inner iterations were achieved for IEEE-

30, IEEE-57 and IEEE-118 test systems when using initializations (I) and (III). Fur-

thermore, unexpected reductions in the number of outer iterations were also ob-
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Table 6.21: Less restrictive tolerance criterion on inner iterations for BO method

and initialization (III).

System ǫ1 k
Vertical Horizontal

jmin j jmax Total jmin j jmax Total

IEEE-30
0.0001 6 12 12.00 12 72 16 16.33 17 98

0.001 4 10 10.00 10 40 13 13.00 13 52

IEEE-57
0.0001 3 12 12.00 12 36 16 16.00 16 48
0.001 3 11 11.00 11 33 13 13.67 14 41

IEEE-118
0.0001 4 13 14.50 19 58 17 18.00 19 72
0.001 4 11 12.25 16 49 15 15.25 16 61

IEEE-300
0.0001 16 14 15.38 26 246 17 23.19 30 371

0.001 Fail - - - - - - - -

REAL-A
0.0001 12 13 14.58 17 175 16 18.50 21 222

0.001 Fail - - - - - - - -

REAL-R
0.0001 3 16 16.00 16 48 15 15.67 17 47
0.001 Fail - - - - - - - -

tained for the IEEE-30 and IEEE-57. Despite the fairly good results, the use of less

restrictive tolerance criteria does not lead to convergence for all test systems and

initializations. For instance, by considering the results for the IEEE-300 test system,

a larger tolerance criteria caused an increase in the number of both inner and outer

overall iterations. Similarly, the approximations generated in the QP subproblems

for the REAL-A and REAL-R test systems were not sufficient to match the required

tolerance ǫ1 = 10−4 on outer iterations.

6.3.5 Monitoring by Primal-Dual Logarithmic Indicators

As shown before, the primal-dual logarithmic indicators can be used to monitor

whether a problem is infeasible or not by gathering information from the slack

variables and Lagrange multipliers associated with the simple bound constraints.

This characteristic is very useful to investigate the failure of convergence of the

proposed trust region IP algorithms as one can analyse the convergence process of

the generated QP subproblems.

For instance, consider the solution of the REAL-A test system by the MBO algo-

rithm and using flat start initialization shown in Table 6.7. This actual subtransmis-

sion system is mainly radial and it usually operates with low voltages on its ending

branches, leading to OPF problems in which some lower bounds are almost con-
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tinuously reached depending on the starting points. Furthermore, the assumptions

regarding subsequent linearizations of the nonlinear constraints in the MBO proce-

dure may not hold when the problem is highly nonlinear and the second order term

in (5.4) is not neglectable, and the method may generate infeasible trust region

subproblems. Figure 6.4 shows the logarithmic indicators profile for the second

trust region subproblem solved by the MBO algorithm. The two sets of variables,

corresponding to active and inactive simple bound constraints, can be clearly seen

when the algorithm converges. Additionally, by analysing the way the indicators

evolve during the iterative process, one can infer about the centrality of the steps

generated by the IP method.
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Figure 6.4: Logarithmic indicators profile for a feasible trust region subproblem.

On the other hand, Figure 6.5 presents the logarithmic indicators profile for

the third trust region subproblem, for which the MBO method fails to converge. It

can be inferred from the the lower and upper bound logarithmic indicators that the

problem is infeasible or nearly infeasible. As discussed in Chapter 3, in the context

of the solution by primal-dual IP methods, an infeasible simple bound can cause its

respective slack variable to rapidly decrease to zero (limited by the logarithmic bar-

rier) in an attempt to become negative. As a direct consequence of very small slack

variables, the primal step calculated from (3.9) tends to zero and the algorithm fails
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to converge. Meanwhile, the corresponding Lagrange multiplier increases very fast,

providing the sensitivity that an active constraint has been found. It is importante

to observe that Figure 6.5 also captures the effect of very small steps on variables

that are strictly inside the feasible region, resulting in lines that are almost straight

from the beginning of the iterative process until the end.
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Figure 6.5: Logarithmic indicators profile for an infeasible trust region subproblem.

6.4 Final Remarks

This chapter presented the preliminary numerical experiments for the proposed

trust region techniques. The results considering random initialization indicate that

the MBO approach may experience some difficulties to handle highly nonlinear

problems, for which the assumptions regarding the direct solution of the trust re-

gion problem may not hold. However, for almost all the tested OPF problems, the

performance of the MBO method is similar to that accomplished by the BO method.

The simulations with the Sℓ1QP method indicate that it is competitive when

compared to the BO method. In each iteration, instead of dividing the solution of

the trust region problem into two subproblems as the BO method does, the Sℓ1QP
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technique solves just one slightly larger problem, which invariably takes less time.

The simulations carried out with different types of initializations have shown that

the proposed method is robust and can handle a wide range of starting points. Addi-

tionally, the computational experiments on the used class of OPF problems indicate

that the procedure to update the ℓ1 penalty parameter can properly estimate a value

for the ℓ1 penalty parameter during the iterative process.
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Chapter 7

Conclusions

T
HERE ARE various reasons that can cause optimization methods fail to con-

verge. For instance, locally convergent methods can fail to converge when

the initial estimate is far from the solution. Line search and trust region

are two important descent strategies for guaranteeing global convergence [1]. This

work has focused on the application of trust region methods, which have been

used to provide global convergence to a wide range of algorithms from uncon-

strained to constrained optimization. Particularly, trust region techniques can be

combined with well-established IP methods to devise more robust algorithms, which

can match the requirements of real-time power systems applications.
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7.1 Summary and Contributions

Despite the recent advances regarding the application of the BO trust region method

to the solution of OPF problems [53], the performance of this trust region algorithm

can be further improved. In this way, this work presented the development of two

trust region IP methods: the MBO and the Sℓ1QP. The former is derived from the

BO algorithm described in [53] and tries to improve on it. Under certain assump-

tions, the trust region problem is directly solved instead of the pair vertical and

horizontal subproblems. By doing this, the total algorithm run time can be reduced

by nearly half. Numerical experiments have shown a slightly inferior performance

of the proposed MBO algorithm when compared to that discussed in [53]. It is

important to observe that the modal values are very close to that accomplished by

the BO approach, which indicates that the assumptions made to directly solve the

trust region problem do not necessarily cause an increase in the number of outer

iterations.

The Sℓ1QP method uses the exact ℓ1 penalty function to overcome possible in-

consistencies among the linearized constraints. The present work described the

development of this method along with the main steps of the solution of the de-

rived trust region problems by primal-dual IP methods. Additionally, based on a

simple simple heuristic, a practical procedure to update the ℓ1 penalty parameter

is proposed. Numerical experiments for OPF problems have demonstrated it is as

robust as the BO strategy. The number of converged cases for randomly generated

starting points are comparable to that achieved by the BO method. Additionally,

the number of linear equations solved in each trust region outer iteration is smaller

than the solved by the BO approach. Therefore, for the tested OPF problems, the

Sℓ1QP method has been proved to be faster than the BO method.

Another relevant aspect when solving an optimization problem is to efficiently

detect and handle infeasibility. Infeasible simple bounds can be identified by using

logarithmic primal-dual indicators [68]. These indicators are functions of the slack

variables and the Lagrange multipliers, which are readily available in IP routines.

When using these indicators, it is of great importance to observe that the values

assumed for weakly active constraints during well-centered iterates are much dif-

ferent from that found for infeasible bounds, which should be interpreted as strong

active constraints.

The MBO and the Sℓ1QP methods were tested with different sets of trust region
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parameters, including those ones given by the literature. Additionally, computa-

tional experiments were carried out with a looser tolerance criteria on the vertical

and horizontal subproblems so as to reduce the computational effort of the pro-

posed methods. Despite the fairly good results, the use of a looser tolerance criteria

on inner iterations has not produced the expected reduction on the algorithm run

time for all test systems.

The difficulties found during the development of the Thesis can be sumarized

as follows:

• The MBO approach can only be applied under certain assumptions concern-

ing the identification of a feasible point for the original nonlinar problem.

These assumptions may not be valid for higly nonlinear systems, for which

the second order term in the Taylor expansion is not negligible.

• The value of the ℓ1 penalty parameter is calculated by a simple heuristic

approach that uses the current estimate of the Lagrange multipliers. This

parameter has a great influence on the performance of the Sℓ1QP method,

so a more sophisticated update methodology could be used to obtain better

results.

7.2 Perspectives for Future Research

During the development of the Thesis some ideas to further improve the perfor-

mance of the related trust region IP methods came up. We consider that the most

exciting and prominent research in this field can be summarized as follows:

• To fully link the infeasibility treatment and monitoring routines to the trust

region QP subproblems. Instead of ending a process that is likely to fail, these

routines would naturally allow and handle inconsistent constraints in the trust

region subproblems in the early stage of convergence.

• To consider scaling matrices and other norms on the used trust region IP

methods.

• To use quasi-Newton approximations to the Hessian Hk in the used trust

region IP methods in order to improve their computational performance.
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• To apply the gradient projection method to the solution of the vertical sub-

problem in the BO method.

• To develop algorithms to define and efficiently implement the optimal se-

quence of controls provided by an OPF solution.
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inviabilidades no fluxo de potência ótimo. In: IV Simpósio Brasileiro de Sistemas
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Appendix A

Parametric Grid

This appendix presents the numerical results for a parametric analysis in which

the initial values of the trust region radius ∆0 and the penalty parameter η0 were

picked from the grid formed by the sets {0.5, 1, 2, 4} and {0.5, 2, 4, 8}, respectively.

Additionally, for the BO and MBO algorithms, the value of the reduction factor of

the trust region ξ on the vertical subproblem was made equal to one value of the

set {0.4, 0.6, 0.8}.

Tables A.1, A.2, A.3, A.4, A.5 and A.6 show the main numerical experiments for

the BO method. Additionally, Tables A.7, A.8, A.9, A.10, A.11 and A.12 show the

main numerical results for the MBO method. Tables A.13, A.14, A.15, A.16, A.17

and A.18 show the results for the proposed Sℓ1QP method.
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Table A.1: Parametric grid for the IEEE 30-bus solved by the BO Method.

∆
0

η
0
ξ CC Mo k σ k

min
k
max

Vertical Horizontal

j
min

j jmax j
min

j jmax

0.5 0.5 0.4 30 4 4.83 1.62 3 9 12 12.19 17 13 16.14 19
0.5 0.5 0.6 30 4 4.93 1.57 3 8 12 12.09 16 14 16.23 19
0.5 0.5 0.8 30 4 5.07 1.80 3 9 11 12.05 16 13 16.21 19
0.5 2 0.4 30 4 4.80 1.63 3 9 12 12.18 17 13 16.08 19
0.5 2 0.6 30 4 4.80 1.54 3 9 12 12.09 16 14 16.15 19
0.5 2 0.8 30 4 5.07 1.95 3 9 11 12.05 16 13 16.11 19
0.5 4 0.4 30 4 4.73 1.48 3 9 12 12.18 17 13 16.10 19
0.5 4 0.6 30 4 4.73 1.39 3 9 12 12.09 16 14 16.17 19
0.5 4 0.8 30 4 5.00 1.84 3 9 11 12.05 16 13 16.12 19
0.5 8 0.4 30 4 4.73 1.48 3 9 12 12.18 17 13 16.10 19
0.5 8 0.6 30 4 4.73 1.39 3 9 12 12.09 16 14 16.17 19
0.5 8 0.8 30 4 5.00 1.84 3 9 11 12.05 16 13 16.13 19

1 0.5 0.4 30 4 5.00 1.74 3 8 12 12.08 16 14 16.03 19
1 0.5 0.6 30 4 5.00 1.74 3 8 11 11.95 14 14 16.04 19
1 0.5 0.8 30 4 5.00 1.74 3 8 11 11.94 12 14 16.04 19
1 2 0.4 30 4 4.83 1.58 3 9 12 12.08 16 14 16.01 19
1 2 0.6 30 4 4.97 1.90 3 10 11 11.95 14 14 16.00 19
1 2 0.8 30 4 4.97 1.90 3 10 11 11.94 12 14 16.00 19
1 4 0.4 30 4 4.93 1.86 3 10 12 12.08 16 14 15.99 19
1 4 0.6 30 4 4.93 1.86 3 10 11 11.95 14 14 16.00 19
1 4 0.8 30 4 4.93 1.86 3 10 11 11.94 12 14 16.00 19
1 8 0.4 30 4 4.93 1.86 3 10 12 12.08 16 14 15.99 19
1 8 0.6 30 4 4.93 1.86 3 10 11 11.95 14 14 16.00 19
1 8 0.8 30 4 4.93 1.86 3 10 11 11.94 12 14 16.00 19
2 0.5 0.4 30 4 4.97 1.83 3 8 11 11.94 12 14 15.89 19
2 0.5 0.6 30 4 4.97 1.83 3 8 11 11.88 12 14 15.89 19
2 0.5 0.8 30 4 4.97 1.83 3 8 11 11.83 12 14 15.89 19
2 2 0.4 30 4 5.47 2.78 3 12 11 11.97 13 14 15.82 19
2 2 0.6 30 4 5.43 2.70 3 11 11 11.89 12 14 15.82 19
2 2 0.8 30 4 5.43 2.70 3 11 11 11.83 12 14 15.82 19
2 4 0.4 30 4 5.40 2.63 3 10 11 11.95 13 14 15.83 19
2 4 0.6 30 4 5.40 2.63 3 10 11 11.89 12 14 15.83 19
2 4 0.8 30 4 5.40 2.63 3 10 11 11.83 12 14 15.83 19
2 8 0.4 30 4 5.40 2.63 3 10 11 11.95 13 14 15.83 19
2 8 0.6 30 4 5.40 2.63 3 10 11 11.89 12 14 15.83 19
2 8 0.8 30 4 5.40 2.63 3 10 11 11.83 12 14 15.83 19
4 0.5 0.4 30 4 4.83 1.62 3 8 11 11.83 12 14 15.83 19
4 0.5 0.6 30 4 4.83 1.62 3 8 11 11.82 12 14 15.83 19
4 0.5 0.8 30 4 4.83 1.62 3 8 11 11.82 12 14 15.83 19
4 2 0.4 30 4 4.87 1.94 3 10 11 11.83 12 14 15.79 19
4 2 0.6 30 4 4.87 1.94 3 10 11 11.82 12 14 15.79 19
4 2 0.8 30 4 4.87 1.94 3 10 11 11.82 12 14 15.79 19
4 4 0.4 30 4 4.87 1.94 3 10 11 11.83 12 14 15.79 19
4 4 0.6 30 4 4.87 1.94 3 10 11 11.82 12 14 15.79 19
4 4 0.8 30 4 4.87 1.94 3 10 11 11.82 12 14 15.79 19
4 8 0.4 30 4 4.87 1.94 3 10 11 11.83 12 14 15.79 19
4 8 0.6 30 4 4.87 1.94 3 10 11 11.82 12 14 15.79 19
4 8 0.8 30 4 4.87 1.94 3 10 11 11.82 12 14 15.79 19
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Table A.2: Parametric grid for the IEEE 57-bus solved by the BO Method.

∆
0

η
0
ξ CC Mo k σ k

min
k
max

Vertical Horizontal

j
min

j jmax j
min

j jmax

0.5 0.5 0.4 30 6 8.23 3.64 5 16 12 12.15 15 13 15.47 19
0.5 0.5 0.6 30 6 7.67 2.41 6 12 12 12.00 12 14 15.56 19
0.5 0.5 0.8 30 6 7.67 2.41 6 12 12 12.00 12 14 15.56 19
0.5 2 0.4 30 6 6.53 0.90 5 8 12 12.10 15 14 15.61 19
0.5 2 0.6 30 6 6.57 0.86 6 8 12 12.00 12 14 15.62 19
0.5 2 0.8 30 6 6.57 0.86 6 8 12 12.00 12 14 15.62 19
0.5 4 0.4 30 6 6.53 0.90 5 8 12 12.10 15 14 15.61 19
0.5 4 0.6 30 6 6.57 0.86 6 8 12 12.00 12 14 15.62 19
0.5 4 0.8 30 6 6.57 0.86 6 8 12 12.00 12 14 15.62 19
0.5 8 0.4 30 6 6.53 0.90 5 8 12 12.10 15 14 15.61 19
0.5 8 0.6 30 6 6.57 0.86 6 8 12 12.00 12 14 15.62 19
0.5 8 0.8 30 6 6.57 0.86 6 8 12 12.00 12 14 15.62 19

1 0.5 0.4 30 6 7.37 2.66 6 16 12 12.04 14 13 15.52 19
1 0.5 0.6 30 6 7.03 1.65 6 11 12 12.00 12 14 15.56 19
1 0.5 0.8 30 6 7.03 1.65 6 11 12 12.00 12 14 15.57 19
1 2 0.4 30 6 6.57 0.86 6 8 12 12.01 14 15 15.59 19
1 2 0.6 30 6 6.57 0.86 6 8 12 12.00 12 15 15.59 19
1 2 0.8 30 6 6.57 0.86 6 8 12 12.00 12 15 15.59 19
1 4 0.4 30 6 6.57 0.86 6 8 12 12.01 14 15 15.59 19
1 4 0.6 30 6 6.57 0.86 6 8 12 12.00 12 15 15.59 19
1 4 0.8 30 6 6.57 0.86 6 8 12 12.00 12 15 15.59 19
1 8 0.4 30 6 6.57 0.86 6 8 12 12.01 14 15 15.59 19
1 8 0.6 30 6 6.57 0.86 6 8 12 12.00 12 15 15.59 19
1 8 0.8 30 6 6.57 0.86 6 8 12 12.00 12 15 15.59 19
2 0.5 0.4 30 6 8.80 4.83 6 18 12 12.08 14 13 15.38 19
2 0.5 0.6 30 6 8.80 4.83 6 18 12 12.08 14 13 15.36 19
2 0.5 0.8 30 6 7.80 2.91 6 13 12 12.00 12 13 15.52 19
2 2 0.4 30 6 6.57 0.86 6 8 12 12.00 12 15 15.59 19
2 2 0.6 30 6 6.57 0.86 6 8 12 12.00 12 15 15.59 19
2 2 0.8 30 6 6.57 0.86 6 8 12 12.00 12 15 15.59 19
2 4 0.4 30 6 6.57 0.86 6 8 12 12.00 12 15 15.59 19
2 4 0.6 30 6 6.57 0.86 6 8 12 12.00 12 15 15.59 19
2 4 0.8 30 6 6.57 0.86 6 8 12 12.00 12 15 15.59 19
2 8 0.4 30 6 6.57 0.86 6 8 12 12.00 12 15 15.59 19
2 8 0.6 30 6 6.57 0.86 6 8 12 12.00 12 15 15.59 19
2 8 0.8 30 6 6.57 0.86 6 8 12 12.00 12 15 15.59 19
4 0.5 0.4 30 6 8.80 4.31 6 17 12 12.07 14 13 15.41 19
4 0.5 0.6 30 6 7.97 2.83 6 12 12 12.00 12 14 15.53 19
4 0.5 0.8 30 6 7.97 2.83 6 12 12 12.00 12 14 15.54 19
4 2 0.4 30 6 6.57 0.86 6 8 12 12.00 12 15 15.59 19
4 2 0.6 30 6 6.57 0.86 6 8 12 12.00 12 15 15.59 19
4 2 0.8 30 6 6.57 0.86 6 8 12 12.00 12 15 15.59 19
4 4 0.4 30 6 6.57 0.86 6 8 12 12.00 12 15 15.59 19
4 4 0.6 30 6 6.57 0.86 6 8 12 12.00 12 15 15.59 19
4 4 0.8 30 6 6.57 0.86 6 8 12 12.00 12 15 15.59 19
4 8 0.4 30 6 6.57 0.86 6 8 12 12.00 12 15 15.59 19
4 8 0.6 30 6 6.57 0.86 6 8 12 12.00 12 15 15.59 19
4 8 0.8 30 6 6.57 0.86 6 8 12 12.00 12 15 15.59 19
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Table A.3: Parametric grid for the IEEE 118-bus solved by the BO Method.

∆
0

η
0
ξ CC Mo k σ k

min
k
max

Vertical Horizontal

j
min

j jmax j
min

j jmax

0.5 0.5 0.4 30 4 4.33 0.55 4 6 13 14.84 22 15 16.94 19
0.5 0.5 0.6 30 4 4.17 0.38 4 5 13 14.04 22 15 16.93 19
0.5 0.5 0.8 30 4 4.20 0.41 4 5 13 13.50 22 14 17.01 19
0.5 2 0.4 30 4 4.23 0.43 4 5 13 14.80 22 15 16.87 19
0.5 2 0.6 30 4 4.20 0.41 4 5 13 14.03 22 15 16.93 19
0.5 2 0.8 30 4 4.20 0.41 4 5 13 13.50 22 14 17.02 19
0.5 4 0.4 30 4 4.23 0.43 4 5 13 14.80 22 15 16.87 19
0.5 4 0.6 30 4 4.17 0.38 4 5 13 14.04 22 15 16.93 19
0.5 4 0.8 30 4 4.17 0.38 4 5 13 13.51 22 14 17.02 19
0.5 8 0.4 30 4 4.23 0.43 4 5 13 14.80 22 15 16.86 19
0.5 8 0.6 30 4 4.17 0.38 4 5 13 14.04 22 15 16.92 19
0.5 8 0.8 30 4 4.17 0.38 4 5 13 13.51 22 14 17.02 19

1 0.5 0.4 30 4 4.07 0.37 4 6 13 13.59 22 15 16.96 19
1 0.5 0.6 30 4 4.17 0.65 4 7 13 13.18 20 15 16.99 19
1 0.5 0.8 30 4 4.13 0.51 4 6 13 13.14 20 15 16.94 19
1 2 0.4 30 4 4.00 0.00 4 4 13 13.55 22 15 16.94 19
1 2 0.6 30 4 4.00 0.00 4 4 13 13.10 15 15 16.97 19
1 2 0.8 30 4 4.00 0.00 4 4 13 13.07 15 15 16.91 19
1 4 0.4 30 4 4.00 0.00 4 4 13 13.55 22 15 16.94 19
1 4 0.6 30 4 4.00 0.00 4 4 13 13.10 15 15 16.97 19
1 4 0.8 30 4 4.00 0.00 4 4 13 13.07 15 15 16.91 19
1 8 0.4 30 4 4.00 0.00 4 4 13 13.55 22 15 16.94 19
1 8 0.6 30 4 4.00 0.00 4 4 13 13.10 15 15 16.97 19
1 8 0.8 30 4 4.00 0.00 4 4 13 13.07 15 15 16.91 19
2 0.5 0.4 30 4 4.07 0.37 4 6 13 13.11 19 15 16.99 19
2 0.5 0.6 30 4 4.00 0.00 4 4 13 13.00 13 15 16.96 19
2 0.5 0.8 30 4 4.00 0.00 4 4 12 12.98 15 15 16.98 19
2 2 0.4 30 4 4.00 0.00 4 4 13 13.07 15 15 16.95 19
2 2 0.6 30 4 4.00 0.00 4 4 13 13.00 13 15 16.95 19
2 2 0.8 30 4 4.00 0.00 4 4 12 12.98 15 15 16.97 19
2 4 0.4 30 4 4.00 0.00 4 4 13 13.07 15 15 16.95 19
2 4 0.6 30 4 4.00 0.00 4 4 13 13.00 13 15 16.95 19
2 4 0.8 30 4 4.00 0.00 4 4 12 12.98 15 15 16.97 19
2 8 0.4 30 4 4.00 0.00 4 4 13 13.07 15 15 16.95 19
2 8 0.6 30 4 4.00 0.00 4 4 13 13.00 13 15 16.95 19
2 8 0.8 30 4 4.00 0.00 4 4 12 12.98 15 15 16.97 19
4 0.5 0.4 30 4 4.03 0.18 4 5 12 13.00 16 15 17.00 19
4 0.5 0.6 30 4 4.10 0.55 4 7 12 12.98 19 15 17.02 19
4 0.5 0.8 30 4 4.10 0.55 4 7 13 13.02 18 15 17.02 20
4 2 0.4 30 4 4.00 0.00 4 4 12 12.98 15 15 16.98 19
4 2 0.6 30 4 4.00 0.00 4 4 12 12.94 13 15 16.98 19
4 2 0.8 30 4 4.00 0.00 4 4 13 13.00 13 15 16.98 19
4 4 0.4 30 4 4.00 0.00 4 4 12 12.98 15 15 16.98 19
4 4 0.6 30 4 4.00 0.00 4 4 12 12.94 13 15 16.98 19
4 4 0.8 30 4 4.00 0.00 4 4 13 13.00 13 15 16.98 19
4 8 0.4 30 4 4.00 0.00 4 4 12 12.98 15 15 16.98 19
4 8 0.6 30 4 4.00 0.00 4 4 12 12.94 13 15 16.98 19
4 8 0.8 30 4 4.00 0.00 4 4 13 13.00 13 15 16.98 19
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Table A.4: Parametric grid for the IEEE 300-bus solved by the BO Method.

∆
0

η
0
ξ CC Mo k σ k

min
k
max

Vertical Horizontal

j
min

j jmax j
min

j jmax

0.5 0.5 0.4 28 23 19.32 3.91 12 28 14 18.07 30 18 22.32 30
0.5 0.5 0.6 30 17 18.10 2.83 12 24 14 17.95 30 18 22.63 30
0.5 0.5 0.8 28 17 16.86 2.52 13 23 14 17.66 30 15 22.67 30
0.5 2 0.4 28 17 17.79 4.57 13 30 14 17.99 30 18 22.08 30
0.5 2 0.6 27 17 16.74 3.12 13 29 14 17.86 30 18 22.49 30
0.5 2 0.8 29 15 15.72 2.22 12 22 14 17.88 30 18 22.61 30
0.5 4 0.4 26 17 16.96 3.35 13 27 14 18.03 30 18 22.07 30
0.5 4 0.6 28 15 16.64 2.70 13 25 14 17.74 30 18 22.45 30
0.5 4 0.8 30 17 16.60 3.23 13 27 14 17.59 30 18 22.65 30
0.5 8 0.4 28 17 16.57 2.99 13 25 14 18.17 30 18 22.03 30
0.5 8 0.6 26 15 16.81 3.39 13 29 14 17.72 30 18 22.39 30
0.5 8 0.8 29 17 16.69 3.25 13 27 14 17.62 30 18 22.63 30

1 0.5 0.4 27 15 17.85 3.08 13 24 14 17.64 30 17 22.39 30
1 0.5 0.6 28 15 16.96 3.53 14 30 14 17.64 30 18 22.57 30
1 0.5 0.8 27 15 15.70 2.27 12 24 14 17.17 30 18 22.80 30
1 2 0.4 29 15 16.62 3.62 12 30 14 17.78 30 17 22.32 30
1 2 0.6 28 15 16.29 2.80 12 27 14 17.56 30 18 22.63 30
1 2 0.8 27 15 15.48 2.23 11 21 14 17.32 30 18 22.72 30
1 4 0.4 27 15 16.41 3.53 12 27 14 17.67 30 17 22.35 30
1 4 0.6 27 15 15.81 2.00 12 23 14 17.58 30 18 22.59 30
1 4 0.8 27 15 15.56 1.93 12 20 14 17.09 30 13 22.71 30
1 8 0.4 27 16 15.67 2.22 12 22 14 17.74 30 18 22.37 30
1 8 0.6 28 15 15.75 1.76 12 21 14 17.62 30 17 22.61 30
1 8 0.8 27 15 15.78 2.41 12 22 14 17.07 30 13 22.72 30
2 0.5 0.4 27 18 18.26 3.53 12 26 14 17.28 30 11 22.48 30
2 0.5 0.6 25 15 15.84 2.98 11 26 14 17.12 30 14 22.46 30
2 0.5 0.8 24 14 16.04 3.42 13 27 14 16.79 30 17 22.61 30
2 2 0.4 30 15 16.63 3.03 11 25 14 17.22 30 11 22.35 30
2 2 0.6 27 14 15.22 2.62 12 26 14 16.96 30 16 22.43 30
2 2 0.8 26 14 14.42 1.33 11 17 14 16.56 30 17 22.47 30
2 4 0.4 27 15 16.11 2.90 11 26 14 17.06 30 11 22.29 30
2 4 0.6 27 15 14.85 1.96 12 22 14 17.00 30 16 22.31 30
2 4 0.8 26 14 14.19 1.30 11 17 14 16.57 30 17 22.45 30
2 8 0.4 28 15 16.00 3.65 11 30 14 17.09 30 11 22.32 30
2 8 0.6 27 15 14.85 1.83 12 22 14 17.01 30 16 22.37 30
2 8 0.8 26 14 14.19 1.30 11 17 14 16.56 30 17 22.45 30
4 0.5 0.4 25 15 16.44 2.00 13 21 14 16.83 30 16 22.46 30
4 0.5 0.6 25 15 15.32 2.67 11 22 14 16.69 30 16 22.74 30
4 0.5 0.8 23 15 17.70 3.70 13 26 14 16.44 30 16 22.89 30
4 2 0.4 25 15 15.56 2.52 11 25 14 16.74 30 16 22.41 30
4 2 0.6 27 15 14.70 2.03 11 18 14 16.60 30 16 22.60 30
4 2 0.8 24 15 15.12 3.21 12 27 14 16.07 30 9 22.71 30
4 4 0.4 26 15 15.19 1.81 11 20 14 16.84 30 16 22.37 30
4 4 0.6 26 15 14.96 2.52 11 22 14 16.48 30 16 22.60 30
4 4 0.8 22 15 14.05 1.40 12 16 14 16.07 30 16 22.71 30
4 8 0.4 27 15 15.07 1.54 11 18 14 16.87 30 16 22.38 30
4 8 0.6 27 15 14.85 2.25 11 22 14 16.56 30 16 22.64 30
4 8 0.8 22 15 14.05 1.40 12 16 14 16.07 30 16 22.73 30
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Table A.5: Parametric grid for the REAL-A solved by the BO Method.

∆
0

η
0
ξ CC Mo k σ k

min
k
max

Vertical Horizontal

j
min

j jmax j
min

j jmax

0.5 0.5 0.4 25 8 10.04 1.95 7 14 12 14.70 18 11 18.17 30
0.5 0.5 0.6 28 8 10.14 2.48 6 16 12 14.56 19 13 18.29 30
0.5 0.5 0.8 29 8 10.97 3.39 7 18 12 14.62 19 14 18.10 30
0.5 2 0.4 21 8 12.38 4.96 7 26 12 14.91 18 11 18.01 30
0.5 2 0.6 26 8 10.92 2.30 7 14 12 14.84 19 14 18.69 30
0.5 2 0.8 25 8 10.88 3.14 7 17 12 14.49 19 15 18.33 30
0.5 4 0.4 21 8 13.71 6.13 7 27 12 14.91 18 11 17.89 30
0.5 4 0.6 26 8 12.12 4.21 7 25 12 14.83 19 14 18.35 30
0.5 4 0.8 25 8 12.56 5.79 8 30 12 14.61 19 15 18.22 30
0.5 8 0.4 22 8 15.27 8.22 7 28 12 14.85 18 11 17.61 30
0.5 8 0.6 25 8 12.36 4.81 7 21 12 14.71 19 14 18.14 30
0.5 8 0.8 25 8 13.00 5.77 8 26 12 14.46 18 15 18.11 30

1 0.5 0.4 23 8 11.43 2.81 8 16 12 14.63 18 11 18.20 30
1 0.5 0.6 27 8 11.44 2.44 8 15 12 14.61 21 11 18.03 30
1 0.5 0.8 27 13 10.59 2.52 7 17 12 14.42 19 11 18.21 30
1 2 0.4 23 8 12.13 4.74 7 25 12 14.76 19 14 18.15 30
1 2 0.6 24 12 12.33 2.63 8 17 12 14.74 20 11 18.10 30
1 2 0.8 28 9 10.64 2.72 7 17 12 14.50 19 10 18.46 30
1 4 0.4 22 8 13.82 6.77 7 28 12 14.79 18 14 18.03 30
1 4 0.6 22 8 14.41 6.12 8 28 12 14.80 20 14 18.06 30
1 4 0.8 27 8 11.44 5.32 7 30 12 14.42 19 10 18.45 30
1 8 0.4 21 8 13.57 7.69 7 30 12 14.66 18 12 18.09 30
1 8 0.6 23 8 16.65 7.47 8 30 12 14.82 19 11 17.68 30
1 8 0.8 24 8 13.25 7.44 7 30 12 14.30 19 14 18.08 30
2 0.5 0.4 20 8 11.80 3.27 8 16 12 14.43 19 14 17.69 30
2 0.5 0.6 28 8 11.39 2.78 8 18 12 14.59 19 11 18.19 30
2 0.5 0.8 26 8 10.50 2.42 8 18 12 14.38 18 12 18.33 30
2 2 0.4 22 9 12.77 4.20 8 22 12 14.70 19 14 17.78 30
2 2 0.6 25 9 11.68 2.82 8 18 12 14.62 19 10 18.13 30
2 2 0.8 26 9 10.73 2.16 8 17 12 14.36 18 12 18.39 30
2 4 0.4 22 9 13.18 5.10 8 24 12 14.73 19 14 17.82 30
2 4 0.6 28 9 12.39 4.48 8 27 12 14.61 19 10 18.13 30
2 4 0.8 24 9 11.33 3.89 8 23 12 14.40 18 12 18.32 30
2 8 0.4 18 8 15.22 8.16 8 29 12 14.63 19 14 17.59 30
2 8 0.6 26 9 14.12 6.54 8 29 12 14.53 19 10 18.01 30
2 8 0.8 27 9 12.74 5.57 8 26 12 14.38 18 9 18.11 30
4 0.5 0.4 23 15 12.96 3.66 8 18 12 14.58 20 12 17.79 30
4 0.5 0.6 26 8 11.73 2.88 8 16 12 14.42 19 13 18.04 30
4 0.5 0.8 27 8 11.48 3.98 8 28 12 14.32 19 7 18.17 30
4 2 0.4 23 10 13.43 4.94 8 24 12 14.71 20 12 18.08 30
4 2 0.6 26 14 13.31 3.99 8 27 12 14.62 19 7 18.03 30
4 2 0.8 27 9 12.30 3.57 8 21 12 14.45 18 11 18.35 30
4 4 0.4 25 8 13.56 5.43 8 23 12 14.65 20 12 18.09 30
4 4 0.6 23 9 14.39 5.16 8 26 12 14.62 19 8 17.80 30
4 4 0.8 26 9 12.12 4.44 8 26 12 14.45 18 7 18.34 30
4 8 0.4 22 10 13.64 7.18 8 29 12 14.49 19 12 18.09 30
4 8 0.6 24 9 16.29 7.28 8 30 12 14.54 19 8 17.59 30
4 8 0.8 26 9 13.58 6.57 8 30 12 14.39 18 7 18.14 30
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Table A.6: Parametric grid for the IEEE REAL-R solved by the BO Method.

∆
0

η
0
ξ CC Mo k σ k

min
k
max

Vertical Horizontal

j
min

j jmax j
min

j jmax

0.5 0.5 0.4 30 4 3.93 0.45 3 5 13 15.44 17 14 16.52 20
0.5 0.5 0.6 30 4 3.93 0.45 3 5 13 15.43 17 14 16.52 20
0.5 0.5 0.8 30 4 3.93 0.45 3 5 13 15.43 17 14 16.52 20
0.5 2 0.4 30 4 4.13 0.63 3 7 13 15.45 17 14 16.53 20
0.5 2 0.6 30 4 4.07 0.37 3 5 13 15.45 17 14 16.51 20
0.5 2 0.8 30 4 4.07 0.37 3 5 13 15.44 17 14 16.51 20
0.5 4 0.4 30 4 4.03 0.32 3 5 13 15.45 17 14 16.50 20
0.5 4 0.6 30 4 4.07 0.37 3 5 13 15.45 17 14 16.51 20
0.5 4 0.8 30 4 4.07 0.37 3 5 13 15.44 17 14 16.51 20
0.5 8 0.4 30 4 4.03 0.32 3 5 13 15.45 17 14 16.50 20
0.5 8 0.6 30 4 4.07 0.37 3 5 13 15.45 17 14 16.51 20
0.5 8 0.8 30 4 4.07 0.37 3 5 13 15.44 17 14 16.51 20

1 0.5 0.4 30 4 3.93 0.45 3 5 13 15.43 17 14 16.51 20
1 0.5 0.6 30 4 3.93 0.45 3 5 13 15.41 17 14 16.49 20
1 0.5 0.8 30 4 3.93 0.45 3 5 13 15.41 17 14 16.50 20
1 2 0.4 30 4 4.07 0.37 3 5 13 15.44 17 14 16.50 20
1 2 0.6 30 4 4.07 0.37 3 5 13 15.42 17 14 16.49 20
1 2 0.8 30 4 4.07 0.37 3 5 13 15.42 17 14 16.50 20
1 4 0.4 30 4 4.07 0.37 3 5 13 15.44 17 14 16.50 20
1 4 0.6 30 4 4.07 0.37 3 5 13 15.42 17 14 16.49 20
1 4 0.8 30 4 4.07 0.37 3 5 13 15.42 17 14 16.50 20
1 8 0.4 30 4 4.07 0.37 3 5 13 15.44 17 14 16.50 20
1 8 0.6 30 4 4.07 0.37 3 5 13 15.42 17 14 16.49 20
1 8 0.8 30 4 4.07 0.37 3 5 13 15.42 17 14 16.50 20
2 0.5 0.4 30 4 3.93 0.45 3 5 13 15.41 17 14 16.48 20
2 0.5 0.6 30 4 3.93 0.45 3 5 13 15.40 17 14 16.46 20
2 0.5 0.8 30 4 3.93 0.45 3 5 13 15.40 17 14 16.48 20
2 2 0.4 30 4 4.07 0.37 3 5 13 15.42 17 14 16.48 20
2 2 0.6 30 4 4.03 0.32 3 5 13 15.42 17 14 16.46 20
2 2 0.8 30 4 4.07 0.37 3 5 13 15.42 17 14 16.48 20
2 4 0.4 30 4 4.07 0.37 3 5 13 15.42 17 14 16.48 20
2 4 0.6 30 4 4.03 0.32 3 5 13 15.42 17 14 16.46 20
2 4 0.8 30 4 4.07 0.37 3 5 13 15.42 17 14 16.48 20
2 8 0.4 30 4 4.07 0.37 3 5 13 15.42 17 14 16.48 20
2 8 0.6 30 4 4.03 0.32 3 5 13 15.42 17 14 16.46 20
2 8 0.8 30 4 4.07 0.37 3 5 13 15.42 17 14 16.48 20
4 0.5 0.4 30 4 3.90 0.40 3 5 13 15.40 17 14 16.46 20
4 0.5 0.6 30 4 3.90 0.40 3 5 13 15.39 17 14 16.48 20
4 0.5 0.8 30 4 3.90 0.40 3 5 13 15.38 17 14 16.50 20
4 2 0.4 30 4 4.03 0.32 3 5 13 15.42 17 14 16.46 20
4 2 0.6 30 4 4.03 0.32 3 5 13 15.41 17 14 16.47 20
4 2 0.8 30 4 4.03 0.32 3 5 13 15.40 17 14 16.50 20
4 4 0.4 30 4 4.03 0.32 3 5 13 15.42 17 14 16.46 20
4 4 0.6 30 4 4.03 0.32 3 5 13 15.41 17 14 16.47 20
4 4 0.8 30 4 4.03 0.32 3 5 13 15.40 17 14 16.50 20
4 8 0.4 30 4 4.03 0.32 3 5 13 15.42 17 14 16.46 20
4 8 0.6 30 4 4.03 0.32 3 5 13 15.41 17 14 16.47 20
4 8 0.8 30 4 4.03 0.32 3 5 13 15.40 17 14 16.50 20
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Table A.7: Parametric grid for the IEEE 30-bus solved by the MBO Method.

∆
0

η
0
ξ CC Mo k σ k

min
k
max

Vertical Trust Region Problem

j
min

j j
max

kfirst j
min

j j
max

0.5 0.5 0.4 30 4 4.83 1.62 3 9 12 12.57 17 1.17 14 16.22 19
0.5 0.5 0.6 30 4 4.93 1.57 3 8 12 12.23 16 1.17 14 16.27 19
0.5 0.5 0.8 30 4 5.07 1.80 3 9 11 12.23 16 1.10 14 16.24 19
0.5 2 0.4 30 4 4.80 1.63 3 9 12 12.57 17 1.17 14 16.16 19
0.5 2 0.6 30 4 4.80 1.54 3 9 12 12.23 16 1.17 14 16.19 19
0.5 2 0.8 30 4 5.07 1.95 3 9 11 12.23 16 1.10 14 16.15 19
0.5 4 0.4 30 4 4.73 1.48 3 9 12 12.57 17 1.17 14 16.19 19
0.5 4 0.6 30 4 4.73 1.39 3 9 12 12.23 16 1.17 14 16.22 19
0.5 4 0.8 30 4 5.00 1.84 3 9 11 12.23 16 1.10 14 16.15 19
0.5 8 0.4 30 4 4.73 1.48 3 9 12 12.57 17 1.17 14 16.19 19
0.5 8 0.6 30 4 4.73 1.39 3 9 12 12.23 16 1.17 14 16.22 19
0.5 8 0.8 30 4 5.00 1.84 3 9 11 12.23 16 1.10 14 16.16 19

1 0.5 0.4 30 4 5.00 1.74 3 8 12 12.27 16 1.10 14 16.05 19
1 0.5 0.6 30 4 5.00 1.74 3 8 11 11.80 14 1.00 14 16.04 19
1 0.5 0.8 30 4 5.00 1.74 3 8 11 11.73 12 1.00 14 16.04 19
1 2 0.4 30 4 4.83 1.58 3 9 12 12.27 16 1.10 14 16.03 19
1 2 0.6 30 4 4.97 1.90 3 10 11 11.80 14 1.00 14 16.00 19
1 2 0.8 30 4 4.97 1.90 3 10 11 11.73 12 1.00 14 16.00 19
1 4 0.4 30 4 4.93 1.86 3 10 12 12.27 16 1.10 14 16.01 19
1 4 0.6 30 4 4.93 1.86 3 10 11 11.80 14 1.00 14 16.00 19
1 4 0.8 30 4 4.93 1.86 3 10 11 11.73 12 1.00 14 16.00 19
1 8 0.4 30 4 4.93 1.86 3 10 12 12.27 16 1.10 14 16.01 19
1 8 0.6 30 4 4.93 1.86 3 10 11 11.80 14 1.00 14 16.00 19
1 8 0.8 30 4 4.93 1.86 3 10 11 11.73 12 1.00 14 16.00 19
2 0.5 0.4 30 4 4.97 1.83 3 8 11 11.73 12 1.00 14 15.89 19
2 0.5 0.6 30 4 4.97 1.83 3 8 11 11.47 12 1.00 14 15.89 19
2 0.5 0.8 30 4 4.97 1.83 3 8 11 11.23 12 1.00 14 15.89 19
2 2 0.4 30 4 5.43 2.70 3 11 11 11.73 12 1.00 14 15.82 19
2 2 0.6 30 4 5.43 2.70 3 11 11 11.47 12 1.00 14 15.82 19
2 2 0.8 30 4 5.43 2.70 3 11 11 11.23 12 1.00 14 15.82 19
2 4 0.4 30 4 5.40 2.63 3 10 11 11.73 12 1.00 14 15.83 19
2 4 0.6 30 4 5.40 2.63 3 10 11 11.47 12 1.00 14 15.83 19
2 4 0.8 30 4 5.40 2.63 3 10 11 11.23 12 1.00 14 15.83 19
2 8 0.4 30 4 5.40 2.63 3 10 11 11.73 12 1.00 14 15.83 19
2 8 0.6 30 4 5.40 2.63 3 10 11 11.47 12 1.00 14 15.83 19
2 8 0.8 30 4 5.40 2.63 3 10 11 11.23 12 1.00 14 15.83 19
4 0.5 0.4 30 4 4.83 1.62 3 8 11 11.23 12 1.00 14 15.83 19
4 0.5 0.6 30 4 4.83 1.62 3 8 11 11.20 12 1.00 14 15.83 19
4 0.5 0.8 30 4 4.83 1.62 3 8 11 11.20 12 1.00 14 15.83 19
4 2 0.4 30 4 4.87 1.94 3 10 11 11.23 12 1.00 14 15.79 19
4 2 0.6 30 4 4.87 1.94 3 10 11 11.20 12 1.00 14 15.79 19
4 2 0.8 30 4 4.87 1.94 3 10 11 11.20 12 1.00 14 15.79 19
4 4 0.4 30 4 4.87 1.94 3 10 11 11.23 12 1.00 14 15.79 19
4 4 0.6 30 4 4.87 1.94 3 10 11 11.20 12 1.00 14 15.79 19
4 4 0.8 30 4 4.87 1.94 3 10 11 11.20 12 1.00 14 15.79 19
4 8 0.4 30 4 4.87 1.94 3 10 11 11.23 12 1.00 14 15.79 19
4 8 0.6 30 4 4.87 1.94 3 10 11 11.20 12 1.00 14 15.79 19
4 8 0.8 30 4 4.87 1.94 3 10 11 11.20 12 1.00 14 15.79 19
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Table A.8: Parametric grid for the IEEE 57-bus solved by the MBO Method.

∆
0

η
0
ξ CC Mo k σ k

min
k
max

Vertical Trust Region Problem

j
min

j j
max

kfirst j
min

j j
max

0.5 0.5 0.4 30 6 7.67 2.41 6 12 12 12.27 15 1.00 14 15.57 19
0.5 0.5 0.6 30 6 7.67 2.41 6 12 12 12.00 12 1.00 14 15.57 19
0.5 0.5 0.8 30 6 7.67 2.41 6 12 12 12.00 12 1.00 14 15.57 19
0.5 2 0.4 30 6 6.57 0.86 6 8 12 12.27 15 1.00 14 15.62 19
0.5 2 0.6 30 6 6.57 0.86 6 8 12 12.00 12 1.00 14 15.62 19
0.5 2 0.8 30 6 6.57 0.86 6 8 12 12.00 12 1.00 14 15.62 19
0.5 4 0.4 30 6 6.57 0.86 6 8 12 12.27 15 1.00 14 15.62 19
0.5 4 0.6 30 6 6.57 0.86 6 8 12 12.00 12 1.00 14 15.62 19
0.5 4 0.8 30 6 6.57 0.86 6 8 12 12.00 12 1.00 14 15.62 19
0.5 8 0.4 30 6 6.57 0.86 6 8 12 12.27 15 1.00 14 15.62 19
0.5 8 0.6 30 6 6.57 0.86 6 8 12 12.00 12 1.00 14 15.62 19
0.5 8 0.8 30 6 6.57 0.86 6 8 12 12.00 12 1.00 14 15.62 19

1 0.5 0.4 30 6 7.03 1.65 6 11 12 12.00 12 1.00 14 15.58 19
1 0.5 0.6 30 6 7.03 1.65 6 11 12 12.00 12 1.00 14 15.58 19
1 0.5 0.8 30 6 7.03 1.65 6 11 12 12.00 12 1.00 14 15.58 19
1 2 0.4 30 6 6.57 0.86 6 8 12 12.00 12 1.00 15 15.59 19
1 2 0.6 30 6 6.57 0.86 6 8 12 12.00 12 1.00 15 15.59 19
1 2 0.8 30 6 6.57 0.86 6 8 12 12.00 12 1.00 15 15.59 19
1 4 0.4 30 6 6.57 0.86 6 8 12 12.00 12 1.00 15 15.59 19
1 4 0.6 30 6 6.57 0.86 6 8 12 12.00 12 1.00 15 15.59 19
1 4 0.8 30 6 6.57 0.86 6 8 12 12.00 12 1.00 15 15.59 19
1 8 0.4 30 6 6.57 0.86 6 8 12 12.00 12 1.00 15 15.59 19
1 8 0.6 30 6 6.57 0.86 6 8 12 12.00 12 1.00 15 15.59 19
1 8 0.8 30 6 6.57 0.86 6 8 12 12.00 12 1.00 15 15.59 19
2 0.5 0.4 30 6 7.63 2.74 6 13 12 12.00 12 1.00 13 15.53 19
2 0.5 0.6 30 6 7.63 2.74 6 13 12 12.00 12 1.00 13 15.53 19
2 0.5 0.8 30 6 7.63 2.74 6 13 12 12.00 12 1.00 13 15.53 19
2 2 0.4 30 6 6.57 0.86 6 8 12 12.00 12 1.00 15 15.59 19
2 2 0.6 30 6 6.57 0.86 6 8 12 12.00 12 1.00 15 15.59 19
2 2 0.8 30 6 6.57 0.86 6 8 12 12.00 12 1.00 15 15.59 19
2 4 0.4 30 6 6.57 0.86 6 8 12 12.00 12 1.00 15 15.59 19
2 4 0.6 30 6 6.57 0.86 6 8 12 12.00 12 1.00 15 15.59 19
2 4 0.8 30 6 6.57 0.86 6 8 12 12.00 12 1.00 15 15.59 19
2 8 0.4 30 6 6.57 0.86 6 8 12 12.00 12 1.00 15 15.59 19
2 8 0.6 30 6 6.57 0.86 6 8 12 12.00 12 1.00 15 15.59 19
2 8 0.8 30 6 6.57 0.86 6 8 12 12.00 12 1.00 15 15.59 19
4 0.5 0.4 30 6 7.97 2.83 6 12 12 12.00 12 1.00 14 15.55 19
4 0.5 0.6 30 6 7.97 2.83 6 12 12 12.00 12 1.00 14 15.55 19
4 0.5 0.8 30 6 7.97 2.83 6 12 12 12.00 12 1.00 14 15.55 19
4 2 0.4 30 6 6.57 0.86 6 8 12 12.00 12 1.00 15 15.59 19
4 2 0.6 30 6 6.57 0.86 6 8 12 12.00 12 1.00 15 15.59 19
4 2 0.8 30 6 6.57 0.86 6 8 12 12.00 12 1.00 15 15.59 19
4 4 0.4 30 6 6.57 0.86 6 8 12 12.00 12 1.00 15 15.59 19
4 4 0.6 30 6 6.57 0.86 6 8 12 12.00 12 1.00 15 15.59 19
4 4 0.8 30 6 6.57 0.86 6 8 12 12.00 12 1.00 15 15.59 19
4 8 0.4 30 6 6.57 0.86 6 8 12 12.00 12 1.00 15 15.59 19
4 8 0.6 30 6 6.57 0.86 6 8 12 12.00 12 1.00 15 15.59 19
4 8 0.8 30 6 6.57 0.86 6 8 12 12.00 12 1.00 15 15.59 19
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Table A.9: Parametric grid for the IEEE 118-bus solved by the MBO Method.

∆
0

η
0
ξ CC Mo k σ k

min
k
max

Vertical Trust Region Problem

j
min

j j
max

kfirst j
min

j j
max

0.5 0.5 0.4 30 4 4.33 0.55 4 6 13 15.85 22 2.77 16 16.93 18
0.5 0.5 0.6 30 4 4.17 0.38 4 5 13 14.92 22 2.13 16 17.02 18
0.5 0.5 0.8 30 4 4.20 0.41 4 5 13 14.01 22 1.77 15 17.00 19
0.5 2 0.4 30 4 4.23 0.43 4 5 13 15.81 22 2.70 16 16.84 18
0.5 2 0.6 30 4 4.20 0.41 4 5 13 14.92 22 2.13 16 16.99 18
0.5 2 0.8 30 4 4.20 0.41 4 5 13 14.01 22 1.77 15 17.01 19
0.5 4 0.4 30 4 4.23 0.43 4 5 13 15.81 22 2.70 16 16.84 18
0.5 4 0.6 30 4 4.17 0.38 4 5 13 14.92 22 2.13 16 16.99 18
0.5 4 0.8 30 4 4.17 0.38 4 5 13 14.01 22 1.77 15 17.01 19
0.5 8 0.4 30 4 4.23 0.43 4 5 13 15.81 22 2.70 16 16.82 18
0.5 8 0.6 30 4 4.17 0.38 4 5 13 14.92 22 2.13 16 16.98 18
0.5 8 0.8 30 4 4.17 0.38 4 5 13 14.01 22 1.77 15 17.01 19

1 0.5 0.4 29 4 4.00 0.00 4 4 13 14.16 22 1.59 15 16.99 19
1 0.5 0.6 28 4 4.00 0.00 4 4 13 13.23 15 1.36 15 17.02 19
1 0.5 0.8 28 4 4.00 0.00 4 4 13 13.18 15 1.32 15 16.94 19
1 2 0.4 30 4 4.00 0.00 4 4 13 14.17 22 1.60 15 16.98 19
1 2 0.6 30 4 4.00 0.00 4 4 13 13.27 15 1.37 15 17.02 19
1 2 0.8 30 4 4.00 0.00 4 4 13 13.18 15 1.33 15 16.93 19
1 4 0.4 30 4 4.00 0.00 4 4 13 14.17 22 1.60 15 16.98 19
1 4 0.6 30 4 4.00 0.00 4 4 13 13.27 15 1.37 15 17.02 19
1 4 0.8 30 4 4.00 0.00 4 4 13 13.18 15 1.33 15 16.93 19
1 8 0.4 30 4 4.00 0.00 4 4 13 14.17 22 1.60 15 16.98 19
1 8 0.6 30 4 4.00 0.00 4 4 13 13.27 15 1.37 15 17.02 19
1 8 0.8 30 4 4.00 0.00 4 4 13 13.18 15 1.33 15 16.93 19
2 0.5 0.4 29 4 4.00 0.00 4 4 13 13.19 15 1.31 15 16.98 19
2 0.5 0.6 30 4 4.00 0.00 4 4 13 13.00 13 1.23 15 16.96 19
2 0.5 0.8 30 4 4.00 0.00 4 4 12 12.93 15 1.00 15 16.98 19
2 2 0.4 30 4 4.00 0.00 4 4 13 13.18 15 1.33 15 16.96 19
2 2 0.6 30 4 4.00 0.00 4 4 13 13.00 13 1.23 15 16.96 19
2 2 0.8 30 4 4.00 0.00 4 4 12 12.93 15 1.00 15 16.97 19
2 4 0.4 30 4 4.00 0.00 4 4 13 13.18 15 1.33 15 16.96 19
2 4 0.6 30 4 4.00 0.00 4 4 13 13.00 13 1.23 15 16.96 19
2 4 0.8 30 4 4.00 0.00 4 4 12 12.93 15 1.00 15 16.97 19
2 8 0.4 30 4 4.00 0.00 4 4 13 13.18 15 1.33 15 16.96 19
2 8 0.6 30 4 4.00 0.00 4 4 13 13.00 13 1.23 15 16.96 19
2 8 0.8 30 4 4.00 0.00 4 4 12 12.93 15 1.00 15 16.97 19
4 0.5 0.4 29 4 4.00 0.00 4 4 12 12.93 15 1.00 15 16.99 19
4 0.5 0.6 29 4 4.00 0.00 4 4 12 12.76 13 1.00 15 16.99 19
4 0.5 0.8 29 4 4.00 0.00 4 4 13 13.00 13 1.00 15 16.99 19
4 2 0.4 30 4 4.00 0.00 4 4 12 12.93 15 1.00 15 16.98 19
4 2 0.6 30 4 4.00 0.00 4 4 12 12.77 13 1.00 15 16.98 19
4 2 0.8 30 4 4.00 0.00 4 4 13 13.00 13 1.00 15 16.98 19
4 4 0.4 30 4 4.00 0.00 4 4 12 12.93 15 1.00 15 16.98 19
4 4 0.6 30 4 4.00 0.00 4 4 12 12.77 13 1.00 15 16.98 19
4 4 0.8 30 4 4.00 0.00 4 4 13 13.00 13 1.00 15 16.98 19
4 8 0.4 30 4 4.00 0.00 4 4 12 12.93 15 1.00 15 16.98 19
4 8 0.6 30 4 4.00 0.00 4 4 12 12.77 13 1.00 15 16.98 19
4 8 0.8 30 4 4.00 0.00 4 4 13 13.00 13 1.00 15 16.98 19
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Table A.10: Parametric grid for the IEEE 300-bus solved by the MBO Method.

∆
0

η
0
ξ CC Mo k σ k

min
k
max

Vertical Trust Region Problem

j
min

j j
max

kfirst j
min

j j
max

0.5 0.5 0.4 27 19 18.52 3.76 12 28 14 24.52 30 6.67 18 22.82 30
0.5 0.5 0.6 28 16 17.57 2.67 14 25 14 24.63 30 5.71 18 23.09 30
0.5 0.5 0.8 29 16 16.93 3.37 13 29 14 24.43 30 5.24 18 22.81 30
0.5 2 0.4 29 13 17.38 3.55 13 29 14 24.38 30 6.00 18 22.55 30
0.5 2 0.6 27 16 16.07 1.80 12 20 14 24.30 30 5.37 18 23.02 30
0.5 2 0.8 29 18 15.41 2.10 11 18 14 24.39 30 5.03 18 22.82 30
0.5 4 0.4 29 13 17.76 4.18 13 30 14 24.38 30 6.00 18 22.62 30
0.5 4 0.6 28 16 16.61 2.82 12 27 14 24.23 30 5.18 18 22.92 30
0.5 4 0.8 29 17 16.69 3.31 13 30 14 24.16 30 4.93 18 22.94 30
0.5 8 0.4 29 18 17.21 3.54 13 28 14 24.39 30 5.97 19 22.55 30
0.5 8 0.6 26 16 16.12 2.07 12 22 14 24.13 30 5.12 18 22.98 30
0.5 8 0.8 28 17 16.14 2.07 13 23 14 24.21 30 4.96 19 22.92 30

1 0.5 0.4 26 16 17.65 3.68 13 29 14 24.26 30 5.54 19 22.86 30
1 0.5 0.6 29 15 17.07 3.52 14 30 14 24.33 30 5.17 18 22.95 27
1 0.5 0.8 27 15 15.67 2.40 12 24 14 23.69 30 4.30 18 23.04 30
1 2 0.4 28 15 15.96 2.66 12 24 14 23.94 30 5.14 10 22.82 30
1 2 0.6 27 15 15.63 1.67 13 21 14 24.49 30 4.56 19 22.97 28
1 2 0.8 28 15 15.43 2.18 12 23 14 23.84 30 4.32 13 22.94 30
1 4 0.4 26 15 15.96 3.13 12 28 14 23.94 30 5.12 19 22.89 30
1 4 0.6 27 15 15.70 1.75 12 21 14 24.52 30 4.52 19 22.93 28
1 4 0.8 27 15 15.30 1.68 12 18 14 23.72 30 4.04 13 23.01 30
1 8 0.4 26 15 15.35 1.79 12 18 14 23.97 30 5.04 19 22.93 28
1 8 0.6 28 15 15.86 1.96 12 21 14 24.55 30 4.54 19 22.92 28
1 8 0.8 28 15 15.61 2.48 12 25 14 23.76 30 4.04 13 23.07 30
2 0.5 0.4 27 15 17.41 3.99 12 26 14 23.95 30 5.22 11 22.77 29
2 0.5 0.6 25 15 16.20 3.55 11 26 14 23.44 30 4.20 14 22.81 28
2 0.5 0.8 21 14 15.00 1.82 12 18 14 23.15 30 3.43 19 22.91 30
2 2 0.4 29 15 16.21 3.31 11 25 14 23.73 30 4.59 11 22.86 30
2 2 0.6 28 15 16.43 4.45 12 30 14 23.17 30 3.71 17 22.71 30
2 2 0.8 26 14 14.23 1.48 11 17 14 22.79 30 3.23 19 22.79 30
2 4 0.4 30 15 16.90 4.96 11 30 14 23.80 30 4.80 11 22.88 30
2 4 0.6 27 15 15.93 4.00 12 29 14 23.29 30 3.74 17 22.62 28
2 4 0.8 26 14 14.23 1.39 11 17 14 22.80 30 3.19 19 22.74 30
2 8 0.4 30 15 16.83 4.56 11 30 14 23.81 30 4.80 11 22.84 30
2 8 0.6 26 15 14.96 1.84 12 21 14 23.43 30 3.81 17 22.77 28
2 8 0.8 26 14 14.23 1.39 11 17 14 22.80 30 3.19 19 22.74 30
4 0.5 0.4 24 15 16.08 1.91 12 20 14 23.47 30 4.12 18 22.85 30
4 0.5 0.6 24 15 15.46 2.36 11 21 14 22.79 30 3.33 19 22.99 27
4 0.5 0.8 18 15 16.72 2.93 13 24 14 22.25 30 3.78 17 23.09 30
4 2 0.4 25 15 15.44 2.83 10 24 14 23.06 30 3.84 18 22.89 30
4 2 0.6 26 15 14.38 1.77 11 18 14 22.39 30 3.12 19 22.81 27
4 2 0.8 23 15 14.43 1.50 12 18 14 20.87 30 2.70 16 22.85 30
4 4 0.4 27 15 15.52 2.85 10 25 14 23.23 30 3.85 18 22.85 30
4 4 0.6 26 15 14.38 1.65 11 18 14 22.39 30 3.12 19 22.86 27
4 4 0.8 23 15 14.48 1.62 12 19 14 20.87 30 2.70 16 22.87 30
4 8 0.4 27 15 15.04 1.83 10 18 14 23.23 30 3.85 18 22.87 30
4 8 0.6 26 15 14.38 1.65 11 18 14 22.39 30 3.12 19 22.86 27
4 8 0.8 23 15 14.70 1.99 12 20 14 20.87 30 2.70 16 22.86 30
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Table A.11: Parametric grid for the REAL-A solved by the MBO Method.

∆
0

η
0
ξ CC Mo k σ k

min
k
max

Vertical Trust Region Problem

j
min

j j
max

kfirst j
min

j j
max

0.5 0.5 0.4 16 8 9.06 1.53 7 12 12 13.82 18 3.75 15 17.19 30
0.5 0.5 0.6 15 8 9.53 2.75 6 17 12 13.80 18 2.87 15 17.36 30
0.5 0.5 0.8 13 8 9.08 1.55 8 12 12 13.71 18 3.46 14 16.91 20
0.5 2 0.4 13 8 9.08 2.14 7 15 12 13.71 18 3.69 15 17.33 30
0.5 2 0.6 11 8 8.45 1.37 7 12 12 13.26 18 2.36 14 17.78 30
0.5 2 0.8 9 8 8.44 0.73 8 10 12 13.37 17 1.89 15 17.38 30
0.5 4 0.4 13 8 9.62 3.33 7 17 12 13.74 18 4.31 15 17.36 30
0.5 4 0.6 10 8 8.20 0.63 7 9 12 13.00 17 1.60 14 17.83 30
0.5 4 0.8 9 8 8.89 1.36 8 12 12 13.37 17 1.89 15 17.27 30
0.5 8 0.4 14 8 10.43 6.00 7 28 12 13.76 18 5.36 15 17.18 30
0.5 8 0.6 10 8 8.30 0.82 7 10 12 13.00 17 1.60 14 17.84 30
0.5 8 0.8 9 8 8.89 1.36 8 12 12 13.37 17 1.89 15 17.27 30

1 0.5 0.4 16 8 10.12 2.90 7 16 12 13.81 18 4.44 15 17.14 30
1 0.5 0.6 12 8 10.17 2.48 8 15 12 13.50 19 4.17 15 17.38 30
1 0.5 0.8 12 8 10.00 2.63 8 17 12 13.35 17 3.58 14 17.49 30
1 2 0.4 13 8 8.77 1.83 7 14 12 13.54 17 2.77 14 17.66 30
1 2 0.6 11 8 9.64 2.42 8 16 12 13.46 18 3.27 15 17.46 30
1 2 0.8 11 8 9.82 2.64 8 15 12 13.47 19 3.73 15 17.61 30
1 4 0.4 15 8 9.33 3.37 7 21 12 13.53 18 3.27 14 17.53 30
1 4 0.6 10 8 8.60 0.70 8 10 12 13.04 17 1.90 15 17.84 30
1 4 0.8 14 8 9.29 1.82 8 15 12 13.54 19 3.14 15 17.70 30
1 8 0.4 16 8 9.50 4.24 7 25 12 13.61 18 3.50 14 17.60 30
1 8 0.6 11 8 9.18 1.83 8 14 12 13.33 18 2.73 15 17.72 30
1 8 0.8 10 8 8.60 0.70 8 10 12 13.00 17 1.80 15 17.41 30
2 0.5 0.4 9 8 8.89 1.05 8 11 12 12.83 16 1.56 15 17.06 30
2 0.5 0.6 14 8 10.93 3.36 8 18 12 13.98 19 5.29 14 17.24 30
2 0.5 0.8 11 8 9.73 2.97 8 18 12 13.32 17 3.18 15 17.33 30
2 2 0.4 7 8 9.14 1.77 8 13 12 13.00 18 2.14 15 17.27 30
2 2 0.6 10 8 11.30 3.43 8 17 12 13.90 19 5.20 15 17.20 30
2 2 0.8 9 8 10.00 2.87 8 17 12 13.31 17 3.11 15 17.29 30
2 4 0.4 8 8 10.00 2.93 8 16 12 13.06 18 2.12 13 17.26 30
2 4 0.6 13 8 11.23 3.00 8 16 12 13.92 19 4.62 13 17.50 30
2 4 0.8 10 8 10.60 3.31 8 17 12 13.32 17 3.00 13 17.27 30
2 8 0.4 6 8 8.67 0.82 8 10 12 12.50 15 1.33 15 17.16 30
2 8 0.6 10 8 10.70 3.33 8 17 12 13.63 19 4.90 15 17.44 30
2 8 0.8 10 8 10.00 2.71 8 17 12 13.53 18 3.60 15 17.33 30
4 0.5 0.4 11 8 9.91 2.91 8 18 12 13.25 18 3.82 14 17.31 30
4 0.5 0.6 11 8 9.09 1.87 8 14 12 13.12 18 2.73 15 17.51 30
4 0.5 0.8 12 8 11.00 5.69 8 28 12 13.41 19 4.83 14 17.21 30
4 2 0.4 10 8 9.40 2.50 8 16 12 13.16 17 2.10 15 17.86 30
4 2 0.6 13 9 12.31 5.41 8 27 12 13.86 19 5.62 15 17.45 30
4 2 0.8 11 9 10.18 2.93 8 17 12 13.39 18 3.18 6 17.89 30
4 4 0.4 12 8 9.08 1.31 8 12 12 13.22 17 2.08 14 17.99 30
4 4 0.6 12 9 10.00 2.59 8 16 12 13.27 18 2.83 14 17.78 30
4 4 0.8 13 9 10.00 3.46 8 21 12 13.49 18 3.62 14 17.83 30
4 8 0.4 12 8 9.08 1.31 8 12 12 13.26 17 2.25 15 17.61 30
4 8 0.6 11 9 10.09 2.70 8 16 12 13.25 17 2.82 15 17.39 30
4 8 0.8 13 9 10.15 3.46 8 21 12 13.56 18 3.85 6 17.70 30
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Table A.12: Parametric grid for the REAL-R solved by the MBO Method.

∆
0

η
0
ξ CC Mo k σ k

min
k
max

Vertical Trust Region Problem

j
min

j j
max

kfirst j
min

j j
max

0.5 0.5 0.4 30 4 3.93 0.45 3 5 13 15.19 17 2.67 14 15.65 17
0.5 0.5 0.6 30 4 3.93 0.45 3 5 13 15.18 17 2.67 14 15.63 17
0.5 0.5 0.8 30 4 3.93 0.45 3 5 13 15.17 17 2.67 14 15.63 17
0.5 2 0.4 29 4 4.03 0.33 3 5 13 15.19 17 2.66 14 15.67 17
0.5 2 0.6 30 4 4.07 0.37 3 5 13 15.18 17 2.67 14 15.65 17
0.5 2 0.8 30 4 4.07 0.37 3 5 13 15.17 17 2.67 14 15.66 17
0.5 4 0.4 30 4 4.03 0.32 3 5 13 15.19 17 2.67 14 15.66 17
0.5 4 0.6 30 4 4.07 0.37 3 5 13 15.18 17 2.67 14 15.65 17
0.5 4 0.8 30 4 4.07 0.37 3 5 13 15.17 17 2.67 14 15.66 17
0.5 8 0.4 30 4 4.03 0.32 3 5 13 15.19 17 2.67 14 15.66 17
0.5 8 0.6 30 4 4.07 0.37 3 5 13 15.18 17 2.67 14 15.65 17
0.5 8 0.8 30 4 4.07 0.37 3 5 13 15.17 17 2.67 14 15.66 17

1 0.5 0.4 30 4 3.93 0.45 3 5 13 15.17 17 2.67 14 15.63 17
1 0.5 0.6 30 4 3.93 0.45 3 5 13 15.15 17 2.67 14 15.65 17
1 0.5 0.8 30 4 3.93 0.45 3 5 13 15.15 17 2.67 14 15.68 17
1 2 0.4 30 4 4.07 0.37 3 5 13 15.17 17 2.67 14 15.66 17
1 2 0.6 30 4 4.07 0.37 3 5 13 15.15 17 2.67 14 15.68 17
1 2 0.8 30 4 4.07 0.37 3 5 13 15.15 17 2.67 14 15.69 17
1 4 0.4 30 4 4.07 0.37 3 5 13 15.17 17 2.67 14 15.66 17
1 4 0.6 30 4 4.07 0.37 3 5 13 15.15 17 2.67 14 15.68 17
1 4 0.8 30 4 4.07 0.37 3 5 13 15.15 17 2.67 14 15.69 17
1 8 0.4 30 4 4.07 0.37 3 5 13 15.17 17 2.67 14 15.66 17
1 8 0.6 30 4 4.07 0.37 3 5 13 15.15 17 2.67 14 15.68 17
1 8 0.8 30 4 4.07 0.37 3 5 13 15.15 17 2.67 14 15.69 17
2 0.5 0.4 30 4 3.93 0.45 3 5 13 15.15 17 2.67 14 15.68 17
2 0.5 0.6 30 4 3.93 0.45 3 5 13 15.15 17 2.67 14 15.67 17
2 0.5 0.8 30 4 3.93 0.45 3 5 13 15.15 17 2.67 14 15.66 17
2 2 0.4 30 4 4.07 0.37 3 5 13 15.15 17 2.67 14 15.69 17
2 2 0.6 30 4 4.03 0.32 3 5 13 15.15 17 2.67 14 15.68 17
2 2 0.8 30 4 4.07 0.37 3 5 13 15.15 17 2.67 14 15.67 17
2 4 0.4 30 4 4.07 0.37 3 5 13 15.15 17 2.67 14 15.69 17
2 4 0.6 30 4 4.03 0.32 3 5 13 15.15 17 2.67 14 15.68 17
2 4 0.8 30 4 4.07 0.37 3 5 13 15.15 17 2.67 14 15.67 17
2 8 0.4 30 4 4.07 0.37 3 5 13 15.15 17 2.67 14 15.69 17
2 8 0.6 30 4 4.03 0.32 3 5 13 15.15 17 2.67 14 15.68 17
2 8 0.8 30 4 4.07 0.37 3 5 13 15.15 17 2.67 14 15.67 17
4 0.5 0.4 30 4 3.90 0.40 3 5 13 15.15 17 2.67 14 15.71 17
4 0.5 0.6 30 4 3.90 0.40 3 5 13 15.13 17 2.67 14 15.70 17
4 0.5 0.8 30 4 3.90 0.40 3 5 13 15.12 17 2.67 14 15.70 17
4 2 0.4 30 4 4.03 0.32 3 5 13 15.15 17 2.67 14 15.72 17
4 2 0.6 30 4 4.03 0.32 3 5 13 15.13 17 2.67 14 15.72 17
4 2 0.8 30 4 4.03 0.32 3 5 13 15.12 17 2.67 14 15.72 17
4 4 0.4 30 4 4.03 0.32 3 5 13 15.15 17 2.67 14 15.72 17
4 4 0.6 30 4 4.03 0.32 3 5 13 15.13 17 2.67 14 15.72 17
4 4 0.8 30 4 4.03 0.32 3 5 13 15.12 17 2.67 14 15.72 17
4 8 0.4 30 4 4.03 0.32 3 5 13 15.15 17 2.67 14 15.72 17
4 8 0.6 30 4 4.03 0.32 3 5 13 15.13 17 2.67 14 15.72 17
4 8 0.8 30 4 4.03 0.32 3 5 13 15.12 17 2.67 14 15.72 17
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Table A.13: Parametric grid for the IEEE 30-bus solved by the Sℓ1QP Method.

∆
0

η
0

CC Mo k σ k
min

k
max

Sℓ
1
QP

j
min

j j
max

0.5 0.5 30 4 4.77 1.61 3 9 14 15.10 17
0.5 2 30 4 4.77 1.61 3 9 14 15.10 17
0.5 4 30 4 4.77 1.61 3 9 14 15.10 17
0.5 8 30 4 4.77 1.61 3 9 14 15.10 17

1 0.5 30 4 4.90 1.65 3 9 15 15.44 16
1 2 30 4 4.90 1.65 3 9 15 15.44 16
1 4 30 4 4.90 1.65 3 9 15 15.44 16
1 8 30 4 4.90 1.65 3 9 15 15.44 16
2 0.5 30 4 4.87 1.83 3 9 15 15.89 17
2 2 30 4 4.87 1.83 3 9 15 15.89 17
2 4 30 4 4.87 1.83 3 9 15 15.89 17
2 8 30 4 4.87 1.83 3 9 15 15.89 17
4 0.5 30 4 4.70 1.60 3 10 15 16.05 17
4 2 30 4 4.70 1.60 3 10 15 16.05 17
4 4 30 4 4.70 1.60 3 10 15 16.05 17
4 8 30 4 4.70 1.60 3 10 15 16.05 17

Table A.14: Parametric grid for the IEEE 57-bus solved by the Sℓ1QP Method.

∆0 η0 CC Mo k σ k
min

kmax

Sℓ1QP

j
min

j j
max

0.5 0.5 30 6 6.97 1.63 5 12 15 16.13 18
0.5 2 30 6 6.97 1.63 5 12 15 16.13 18
0.5 4 30 6 6.97 1.63 5 12 15 16.13 18
0.5 8 30 6 6.97 1.63 5 12 15 16.13 18

1 0.5 30 6 7.03 1.79 5 12 15 16.53 18
1 2 30 6 7.03 1.79 5 12 15 16.53 18
1 4 30 6 7.03 1.79 5 12 15 16.53 18
1 8 30 6 7.03 1.79 5 12 15 16.53 18
2 0.5 30 6 6.90 1.45 5 10 15 17.00 19
2 2 30 6 6.90 1.45 5 10 15 17.00 19
2 4 30 6 6.90 1.45 5 10 15 17.00 19
2 8 30 6 6.90 1.45 5 10 15 17.00 19
4 0.5 30 6 7.10 1.99 5 13 15 17.15 20
4 2 30 6 7.10 1.99 5 13 15 17.15 20
4 4 30 6 7.10 1.99 5 13 15 17.15 20
4 8 30 6 7.10 1.99 5 13 15 17.15 20
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Table A.15: Parametric grid for the IEEE 118-bus solved by the Sℓ1QP Method.

∆
0

η
0

CC Mo k σ k
min

k
max

Sℓ
1
QP

j
min

j j
max

0.5 0.5 30 5 4.77 1.14 4 10 15 17.99 30
0.5 2 30 5 4.77 1.14 4 10 15 17.99 30
0.5 4 30 5 4.77 1.14 4 10 15 17.99 30
0.5 8 30 5 4.77 1.14 4 10 15 17.99 30

1 0.5 30 4 4.30 0.47 4 5 17 18.20 20
1 2 30 4 4.30 0.47 4 5 17 18.20 20
1 4 30 4 4.30 0.47 4 5 17 18.20 20
1 8 30 4 4.30 0.47 4 5 17 18.20 20
2 0.5 30 4 4.00 0.00 4 4 18 18.51 20
2 2 30 4 4.00 0.00 4 4 18 18.51 20
2 4 30 4 4.00 0.00 4 4 18 18.51 20
2 8 30 4 4.00 0.00 4 4 18 18.51 20
4 0.5 30 4 4.00 0.00 4 4 18 18.73 21
4 2 30 4 4.00 0.00 4 4 18 18.73 21
4 4 30 4 4.00 0.00 4 4 18 18.73 21
4 8 30 4 4.00 0.00 4 4 18 18.73 21

Table A.16: Parametric grid for the IEEE 300-bus solved by the Sℓ1QP Method.

∆0 η0 CC Mo k σ k
min

kmax

Sℓ1QP

j
min

j j
max

0.5 0.5 15 18 19.13 2.39 15 23 18 23.54 30
0.5 2 15 18 19.13 2.39 15 23 18 23.54 30
0.5 4 15 18 19.13 2.39 15 23 18 23.54 30
0.5 8 15 18 19.13 2.39 15 23 18 23.54 30

1 0.5 29 18 18.90 2.18 15 23 19 23.41 30
1 2 29 18 18.90 2.18 15 23 19 23.41 30
1 4 29 18 18.90 2.18 15 23 19 23.41 30
1 8 29 18 18.90 2.18 15 23 19 23.41 30
2 0.5 29 17 17.14 1.46 15 20 19 23.74 30
2 2 29 17 17.14 1.46 15 20 19 23.74 30
2 4 29 17 17.14 1.46 15 20 19 23.74 30
2 8 29 17 17.14 1.46 15 20 19 23.74 30
4 0.5 27 17 16.93 1.49 14 21 17 24.17 30
4 2 27 17 16.93 1.49 14 21 17 24.17 30
4 4 27 17 16.93 1.49 14 21 17 24.17 30
4 8 27 17 16.93 1.49 14 21 17 24.17 30
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Table A.17: Parametric grid for the REAL-A solved by the Sℓ1QP Method.

∆
0

η
0

CC Mo k σ k
min

k
max

Sℓ
1
QP

j
min

j j
max

0.5 0.5 26 8 8.77 1.31 7 12 14 18.16 30
0.5 2 26 8 8.77 1.31 7 12 14 18.16 30
0.5 4 26 8 8.77 1.31 7 12 14 18.16 30
0.5 8 26 8 8.77 1.31 7 12 14 18.16 30

1 0.5 30 8 9.13 2.26 7 18 14 18.57 30
1 2 30 8 9.13 2.26 7 18 14 18.57 30
1 4 30 8 9.13 2.26 7 18 14 18.57 30
1 8 30 8 9.13 2.26 7 18 14 18.57 30
2 0.5 28 8 8.89 1.23 8 13 14 19.20 30
2 2 28 8 8.89 1.23 8 13 14 19.20 30
2 4 28 8 8.89 1.23 8 13 14 19.20 30
2 8 28 8 8.89 1.23 8 13 14 19.20 30
4 0.5 30 8 9.43 2.49 7 19 15 19.63 30
4 2 30 8 9.43 2.49 7 19 15 19.63 30
4 4 30 8 9.43 2.49 7 19 15 19.63 30
4 8 30 8 9.43 2.49 7 19 15 19.63 30

Table A.18: Parametric grid for the REAL-R solved by the Sℓ1QP Method.

∆0 η0 CC Mo k σ k
min

kmax

Sℓ1QP

j
min

j j
max

0.5 0.5 30 5 4.57 0.63 3 6 15 17.25 30
0.5 2 30 5 4.57 0.63 3 6 15 17.25 30
0.5 4 30 5 4.57 0.63 3 6 15 17.25 30
0.5 8 30 5 4.57 0.63 3 6 15 17.25 30

1 0.5 30 5 4.57 0.63 3 6 16 17.83 30
1 2 30 5 4.57 0.63 3 6 16 17.83 30
1 4 30 5 4.57 0.63 3 6 16 17.83 30
1 8 30 5 4.57 0.63 3 6 16 17.83 30
2 0.5 30 5 4.57 0.63 3 6 17 18.72 30
2 2 30 5 4.57 0.63 3 6 17 18.72 30
2 4 30 5 4.57 0.63 3 6 17 18.72 30
2 8 30 5 4.57 0.63 3 6 17 18.72 30
4 0.5 30 5 4.57 0.63 3 6 17 19.15 30
4 2 30 5 4.57 0.63 3 6 17 19.15 30
4 4 30 5 4.57 0.63 3 6 17 19.15 30
4 8 30 5 4.57 0.63 3 6 17 19.15 30
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