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ABSTRACT 

 

We have developed a probabilistic model to quantify the risks of COVID-19 

explosion in Brazil, which is the epicenter of COVID-19 in Latin America. By explosion, 

we mean an excessive number of new infections that would overload the public health 

system. We made predictions from July 12th to October 10th, 2020 for various containment 

strategies, including business as usual, stay at home (SAH) for young and/or elderly, 

flight restrictions among regions, gradual resumption of business and the compulsory 

wearing of masks. They indicate that: if a SAH strategy was sustained, there would be a 

negligible risk of explosion and the public health system would not be overloaded. For 

the other containment strategies, the scenario that combines the gradual resumption of 

business with the mandatory wearing of masks would be the most effective, reducing risk 

to considerable category. Should this strategy is applied together with the investment in 

more Intensive Care Unit beds, risk could be reduced to negligible levels. 

 

  



1 INTRODUCTION 

Brazil is the epicenter of coronavirus disease (COVID-19) in Latin America and 

is the second hardest hit country, with almost 2,5 million confirmed cases and more than 

88,000 deaths by end of July 2020 (worldometers, 2020). Indeed, infected people have 

been confirmed in all the 5 regions: North (N), Northeast (NE), Central-West (CW), 

Southeast (SE), and South (S). The lack of efficient risk management and poor risk 

communication to the public, linked to other environmental, socio-economic factors (e.g. 

high proportion of young population, who are more exposed, and thus virus spreads faster; 

high population density in urban centers and ‘favelas’; economical pressure to come back 

to business to avoid massive unemployment and starvation) make the perspectives for 

Brazil even more worrisome. In this context, this work provides useful results for 

developing more efficient risk management and communication in Brazil. 

Since late March, when reports about SARS-CoV-2 (hereinafter, the term virus 

without specification refers to SARS-CoV-2) transmission patterns in Brazil started to 

emerge, many containment strategies have been discussed and implemented to control its 

spread until a vaccine is developed, licensed and manufactured. These actions include 

social isolation (for the purposes of this work, this is equivalent to Stay At Home (SAH) 

measures), vertical isolation (when SAH is applied only to the elderly), restrictions on 

business/studies/social activities (hereinafter, the term business refers to all of these three 

types of activities), gradual resumption of business, national flights restrictions and 

wearing of face masks. This work simulates each of these strategies, keeping all other 

things the same (Ceteris paribus) in order to track their effectiveness. 

To assist policymakers in making decisions, many mathematical models have 

been proposed to describe and predict the evolution of number of infections and deaths 



in Brazil either at regional or national level (Canabarro et al., 2020; Coelho et al., 2020; 

Costa et al., 2020; Crokidakis, 2020; Mellan et al., 2020; Savi et al., 2020). However, at 

the best of authors’ knowledge, all these models are deterministic, i.e. the model inputs 

and outputs are single-point estimates, usually expected values, without proper treatment 

about the uncertainty. This limits the application of these outcomes because actual values 

may greatly vary around the expected measures. Thus, deterministic predictions may lead 

to imprudent decisions and actions by managers and society, and thousands of deaths as 

a result. In fact, a recent study highlights the importance of acknowledging uncertainty as 

a main component of risk of COVID-19 pandemic (Aven & Bouder, 2020). 

On the other hand, our model is probabilistic in nature. The great advantage of 

probabilistic over deterministic approaches is that results show not only what could 

happen, but how likely each outcome is. In this way, one can measure and communicate 

uncertainty in results. This is the main characteristic of our model.  

There are a few probabilistic COVID-19 models to predict cases in Brazil 

(Crokidakis, 2020; Martinez et al., 2020; Sousa et al., 2020). Similarly to our model, they 

structure the population in stages and have parameters that govern the transition from one 

stage to another, e.g. the infection rate governs the transition from susceptible to infected 

individuals (note: this rate should not be confused with the reproduction number (R), i.e. 

a dimensionless value that describes the number of secondary cases one case would 

produce; for more details see (Delamater et al., 2019)). In comparison to these models, 

another feature that makes ours innovative is how we treat the infection rate. In the 

aforementioned models, this parameter is assumed to be constant over time and, then, the 

number of infected grows exponentially and is unlimited until the end of the forecast, 

which causes results to be overestimated. To simulate containment scenarios, they 



(Crokidakis, 2020; Martinez et al., 2020; Sousa et al., 2020) manually alter the infection 

rate and generate predictions.  

Conversely, the approach considered in this work is grounded on the concepts of 

population ecology (H Resit Akçakaya et al., 1999), in which the virus dynamics can be 

described not only in terms of the host parameters, but also of those inherent to the virus 

itself. We aggregate in the model the concept of Density-Dependence (DD), which is the 

modification in the influence of any factor that affects the population growth as the 

population density changes (H Resit Akçakaya et al., 1999). In this sense, the population 

density of exposed susceptible people (i.e. the carrying capacity of the virus) decreases 

over time as the virus spreads. This happens because the harder the virus finds susceptible 

people to infect, the lower the infection rate.  

Thus, our model includes two realistic features that the aforementioned 

approaches do not. First, for any containment scenario, as more people become infected, 

the susceptible population density decreases, and then does the infection rate. Secondly, 

to simulate different containment measures, we do not manually alter the respective 

infection rate, because we consider that containment strategies do not instantly reduce the 

infection rate since the start of the simulation. Instead, we consider that each containment 

strategy causes a reduction in the carrying capacity and, thus, accelerates the decrease in 

the infection rate over time. We perform this through Contest type DD modelling (H Resit 

Akçakaya et al., 1999), as we explain further. 

A few more contributions are: (i) our model is structured by age groups (young 

and elderly) with different probabilities of fatality and/or infection, which allows to 

simulate specific containment strategies; (ii) it is a metapopulation model structured by 5 

subpopulations, representing each Brazilian region, with different probabilities of fatality 



and/or infection as well as different probabilities of dispersal between subpopulations; 

(iii) it is able to assess quantitatively the effectiveness of recent containment plans (e.g. 

(a) gradual resumption of economy; and (b) mass distribution and compulsory wearing 

of masks), no matter they are applied either in an isolated or integrated manner.  

In this work, we use the well-known definition of risk as a measure of 

probability/frequency/likelihood and undesired consequences (CPR18E, 2005), PURPLE 

BOOK). More specifically, this work conducts a Quantitative Microbial Risk Assessment 

(QMRA), which is the formal process of estimating the probability of undesired 

consequences to humans due to exposure to one or more microbial pathogens (Duarte et 

al, 2019; Haas et al., 1999). The main objective of a QMRA is to predict relative risks for 

future scenarios and/or to evaluate the effectiveness of different containment measures.  

Therefore, the aim of this paper is to develop an epidemiological probabilistic 

model for COVID-19 that overcomes the aforementioned drawbacks of other models and 

is tailored for a QMRA. To the best of our knowledge, this works conducts the first 

QMRA of COVID-19 in Brazil. We set out to answer the following questions in order to 

steer Brazilian policymakers on how to prioritize resources for designing containment 

scenarios: 

• How many lives can we save and how many infections can we reduce until 

October 10th if we decide to implement a certain containment strategy? 

• What is the probability of having a collapse in the Brazilian health system by 

October 10th for each containment scenario? Would a gradual economic 



resumption plan be effective to reduce the risk of collapse? Is vertical isolation 

effective? What about Business as Usual (BAU) with the wearing of masks? 

• Which regions are most at risk in the future? Which ones deserve the most effort 

to control the disease? What is the order of prioritization? 

• What is the risk category for an integrated strategy where wearing of masks is 

mandatory for everyone out of home together with a gradual resumption of the 

economy? How many more Intensive Care Unit (ICUs) beds would it be necessary 

to invest, alongside with the integrated strategy, to reduce the risk to negligible 

levels? 

The remainder of this work is structured as follows. First, we present the model 

structure and the assumptions, which is flexible in parameterization and can be used to 

simulate several containment scenarios. Next, we discuss the materials and methods to 

carry out a QMRA and explain how we consolidate and parameterize scenarios. Then, we 

present the model results for each scenario, compare them, answer the questions raised 

above, and discuss the advantages and limitations of the model. Finally, we draw some 

conclusions and propose suggestions for future works. 

2 THE STRUCTURE OF OUR APPROACH AND ASSUMPTIONS 

This section focuses on the structure of our approach, which concerns the 

arrangement of the equations and parameters that govern the models. In our model, we 

have a metapopulation (Brazil) divided into 5 subpopulations (regions) with potential for 

dispersal among them. Thus, we can predict the spatial structure of the infected population 

in Brazil over time. We subdivide Brazil into regions, instead of states, to keep the model 

and communication of risk simpler. A model that would represent dispersal among all the 



26 states could become intractable, resulting in challenging risk communication to 

authorities as well as to the public.  

Some models (Choi & Ki, 2020; Zhang et al., 2020) are tailored for estimating the 

reproduction number (R) of COVID-19, i.e. a dimensionless value that describes the 

number of secondary cases one case would produce. Thus, an outbreak is expected to 

continue if R > 1 and to end if R < 1. Although the R indicates, in a simple way, whether 

an outbreak will continue or not, estimating the R value is far from straightforward. 

According to (Delamater et al., 2019), the actual R value is affected by numerous 

biological, socio-behavioral, and environmental factors that govern pathogen 

transmission and, thus, is usually estimated by sophisticated mathematical models with 

many assumptions and sources of uncertainties, which are not communicated in the final 

R estimate. In the hand of experts, R can be a valuable concept. However, in the hand of 

policymakers and general public, who have not been trained in sophisticated 

mathematical techniques, it is easily misinterpreted and misapplied. Thus, we believe that 

a risk-based approach can better communicate predictions. 

Our method allows for the quantification and categorization of the risk of 

explosion (i.e. the probability that the number of infected people surpasses a certain 

threshold within a short time interval, which would likely cause a collapse in the health 

system due to the lack of available IUCs. To understand the model’s equations, one must 

first understand the definition of the risk of explosion and its categorization, as follows. 

2.1 Risk of explosion and categorization 

Risk categorization has been used in various fields of QRA to make risk 

communication easier (e.g. industrial QRA (CPR18E, 2005), ecological QRA (IUCN, 

2001), microbial QRA for water safety management (WHO, 2016), microbial QRA of 



schistosomiasis (Duarte et al., 2014). It transforms quantitative risk into qualitative risk 

categories. This is especially helpful for risk communication to the general public and 

politicians, who are mostly unfamiliar with quantitative risk language. Thus, we here 

propose four risk categories and the correct understanding of these is paramount to a 

correct interpretation of the results: 

● CRITICAL RISK (CR): >50% probability of explosion within 21 days. 

● HIGH RISK (HI): >20% probability of explosion within 28 days. 

● CONSIDERABLE RISK (CO): >10% probability of explosion within 90 days. 

● NEGLIGIBLE RISK (NE): <10% probability of explosion within 90 days. 

The method for reaching the above categories is as follows. Quantitative risk has 

three dimensions: probability, undesired consequence, and time (Duarte et al., 2019; 

IUCN, 2001), and then we established bounds for these three dimensions in order to form 

a risk category. In our case, the undesired consequence for all categories is the explosion 

of the disease (many infected people in a short time period) in such a way that the health 

system is unable to serve all critical cases. 

Brazil has only 16.3 IUC beds per 100,000 population (e.g. Germany has 33.9 per 

100,000), and this is the main bottleneck in public hospital capacity for the treatment of 

COVID-19 (Beatriz Rache et al., 2020). Our model gives predictions in terms of infected 

people, I(t), and not in number of critical cases in need of ICU beds. The available number 

of ICUs is 34,318 (Min. da Saude, 2020), and the proportion of infected people that 



develop critical conditions, and then need ICU, is 2% (worldometers, 2020). Thus, it 

follows that: 

𝐼𝐶𝑈 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 34,318 = (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡) × 2%. And, then, 

the explosion threshold is crossed when:  

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 ≥
34,318

0.02
= 1,715,900.  

By means of Monte Carlo simulation, we generate 10,000 predictions for each 

day, t, from July 12th 2020. From that sample of results, for each t, we calculate the 

frequency per time-step that the prediction crosses the explosion threshold, which yields 

an estimate of the probability of explosion at t. 

With respect to the time dimension, assuming that critical cases need around 21 

to 28 days to be discharged (based on the opinion of an infectious disease doctor at the 

Santa Lúcia Hospital in Brazil (Hospital Santa Lucia, 2020), we then define 21, 28, 90 

and 90 days for CR, HI, CO and NE respectively. Regarding the probability dimension, 

the bounds are the same as those in the red list categories of the International Union for 

the Conservation of Nature (IUCN) (IUCN, 2001) (i.e. >50%, >20%, >10% and <10%, 

respectively for CR, HI, CO and NE).  

Note that the proposed categories do not consider the probability of massive 

deaths as is common in industrial QRA. Our categories seek indicating the risk of 

overloading the health system, which is associated not only with deaths, but also with 

high numbers of sick people and substantial socio-economic costs. Conversely, risk 

categories based on deaths could neglect very infectious diseases with low rates of death, 

although the health system would be overloaded. Thus, we preferred to consolidate our 

undesired consequence in terms of infections, as these categories can serve as a proxy for 



QMRA of future pandemics and these will not neglect infectious diseases with low 

fatality rates. 

2.2 The model 

Our model also allows for fast simulation and generation of results for varying 

scenarios regarding different containment measures, thus assessing their effectiveness in 

terms of reducing number of infections, deaths and, then, risk. Yet, the model is composed 

of submodels that represent regions, and thus it is possible to identify the subpopulations, 

where SARS-CoV-2 might persist, and hence this help decide which areas should be 

prioritized.  

We separate each subpopulation into three states: Susceptible; Infected; and 

Recovered. When Susceptible individuals get Infected, they may either become 

Recovered or die (represented by the “Deaths Counter” box) in Figure 1, which shows a 

simplified diagram of our model. After recovery, we assumed that a person cannot get 

Infected again, although it is still unknown if a Recovered person gains immunity. Studies 

have showed that after an infection, a small production of antibodies can suffice to almost 

certainly guarantee immunity to the disease, however, immunity may dramatically fall 90 



days since recovery (Long et al., 2020; Robbiani et al., 2020). We assumed that recovered 

people will stay immune over the 90 days forecasted period.  

 

Figure 1. Simplified schematic representation of Covid-19 dynamics in human population. 

Let 𝑁𝑠
𝑖(𝑡) denote the number of people in state 𝑠 in region 𝑖 at time 𝑡. The structure 

of each subpopulation is: young susceptible (𝑠 = 1), young infected (𝑠 = 2), young 

recovered (𝑠 = 3), elderly susceptible (𝑠 = 4), elderly infected (𝑠 = 5) and elderly 

recovered (𝑠 = 6). Therefore, the model projects the number of infected people (𝐼𝑖(𝑡) =

𝑁2
𝑖(𝑡) + 𝑁5

𝑖(𝑡)) for each region 𝑖 for a period of time of 90 days, from July 12th, 2020 to 

October 10th, 2020.  

In ecology, resources are often limited in a habitat. For instance, plants in a garden 

compete with each other for soil nutrients, fishes in a lake compete for food. Analogously, 

in our model SARS-CoV-2 in Brazil compete for exposed susceptible people to infect, 

survive and reproduce. The more infected people, the less susceptible ones and the less 

resources available for SARS-CoV-2. To model the infection rate as a function of the 

number of infected at time 𝑡, we use the Contest type of DD that occurs when the 

resources are shared unequally and randomly amongst the individuals, leading to survival 



and reproduction of some at the expense of others (H R Akçakaya & Root, 2013). In other 

words, the rationale for that assumption is that, the lower the size of susceptible 

population exposed to the virus, the lower the infection rates. In this situation, there would 

be less resources allowing the virus to spread as it starts to compete for susceptible bodies 

to continue reproduction, until a point where the host population reaches herd immunity, 

making the spread of disease from person to person very unlikely.  

We assume that competition among viruses is unequal (Contest type) because 

susceptible hosts (resources) are divided unfairly among viruses, as viruses that are in 

exposed/unprotected hosts are more likely to find other susceptible ones than those that 

are in unexposed/protected hosts (e.g. staying at home, wearing face masks). This is 

modeled through the following equation:  

𝛽𝑖(𝑡) =
𝛽𝑚𝑎𝑥

𝑖 ∙Κk∙𝑆𝑖

𝛽𝑚𝑎𝑥
𝑖 ∙𝐼𝑖(𝑡)−𝐼𝑖(𝑡)+Κk∙𝑆𝑖

   (Equation 1) 

where 𝛽𝑚𝑎𝑥
𝑖  is the maximum infection rate observed in region i, Κk is the scenario-

specific exposure index; and 𝑆𝑖 is the region-specific susceptible population. 𝛽𝑖(𝑡) in turn 

determines the stage-specific infection rates 𝑎22(𝑡), 𝑎55(𝑡), 𝑎25(𝑡) and 𝑎52(𝑡) (see Table 

2).  

DD approach is based on ecological modelling (H R Akçakaya & Root, 2013). 

For example, other models that use Contest type for DD are: European mudminnow in 

the Australia Floodplain, Trout cod in Southeast Australia, Sand-lizard in Central 



Sweden, Helmeted honeyeater in Australia and Florida key deer (H Resit Akçakaya et al., 

2004). 

The following model represents one replication that specifically predicts the 

population for each region from a time step 𝑡 to 𝑡 + 1 (the variables of the model are 

described in Table 1): 

[
 
 
 
 
 
 
𝑁1

𝑖 (𝑡 + 1)

𝑁2
𝑖 (𝑡 + 1)

𝑁3
𝑖 (𝑡 + 1)

𝑁4
𝑖 (𝑡 + 1)

𝑁5
𝑖 (𝑡 + 1)

𝑁6
𝑖 (𝑡 + 1)]

 
 
 
 
 
 

=

[
 
 
 
 
 
𝑎11 0 0 0 0 0

0 𝑎22
𝑖 (𝑡) 0 0 𝑎25

𝑖 (𝑡) 0

0 𝑎32 𝑎33 0 0 0

0 0 0 𝑎44 0 0

0 𝑎52
𝑖 (𝑡) 0 0 𝑎55

𝑖 (𝑡) 0

0 0 0 0 𝑎65 𝑎66]
 
 
 
 
 

×

[
 
 
 
 
 
 
𝑁1

𝑖 (𝑡)

𝑁2
𝑖 (𝑡)

𝑁3
𝑖 (𝑡)

𝑁4
𝑖 (𝑡)

𝑁5
𝑖 (𝑡)

𝑁6
𝑖 (𝑡)]

 
 
 
 
 
 

−

[
 
 
 
 
 

0

𝛼2 ∗ 𝑁2
𝑖 (𝑡)

0

0

𝛼5 ∗ 𝑁5
𝑖 (𝑡)

0 ]
 
 
 
 
 

 

where 𝑎𝑠𝑢 is the transition rate from state 𝑢 to state 𝑠, and 𝑎𝑢𝑢 is the permanence rate in 

state 𝑢 (𝑢, 𝑠 ∈ [1,6]). For instance, 𝑎32 is the transition rate from state 2 (young infected) 

to 3 (young recovered), i.e. the recovery rate for young, while 𝑎11 is the permanence rate 

in state 1 (young susceptible); 𝛼2 and 𝛼5 are the mortality of infected young and elderly 

individuals respectively. 

 Some transition rates (i.e. 𝑎11, 𝑎22, 𝑎32, 𝑎33, 𝑎44, 𝑎65, 𝑎65) are random variables 

that follow PDFs with parameters that are constant over time; therefore, a value is 

randomly selected from the associated PDF for an iteration and kept constant for the entire 

90 time-step period. On the other hand, the stage-specific infection rates (i.e. 

𝑎22(𝑡), 𝑎25(𝑡), 𝑎52(𝑡), 𝑎55(𝑡)) are nonparametrical stochastic processes because they are 

random and dependent both on the interaction among individuals and on the susceptible 



population exposed to the infection. Therefore, their PDFs change over time and a value 

is randomly selected from the associated PDF at t. 

Next, we update the 𝑁𝑠
𝑖(𝑡 + 1) estimates in order to account for the dispersal of 

individuals by adding the number of entries and subtracting the number of exits for each 

subpopulation:  

[
 
 
 
 
 
 
𝑁𝐸𝑈(𝑡 + 1)

𝑁𝑁𝐴(𝑡 + 1)

𝑁𝐿𝐴(𝑡 + 1)

𝑁𝐴𝑆(𝑡 + 1)

𝑁𝐴𝐹(𝑡 + 1)

𝑁𝑂𝐶(𝑡 + 1)]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
𝑁′

𝐸𝑈
(𝑡 + 1)

𝑁′
𝑁𝐴

(𝑡 + 1)

𝑁′
𝐿𝐴

(𝑡 + 1)

𝑁′
𝐴𝑆

(𝑡 + 1)

𝑁′
𝐴𝐹

(𝑡 + 1)

𝑁′
𝑂𝐶

(𝑡 + 1)]
 
 
 
 
 
 

+ [𝑀]6𝑥6

[
 
 
 
 
 
 
𝑁′

𝐸𝑈
(𝑡 + 1)

𝑁′
𝑁𝐴

(𝑡 + 1)

𝑁′
𝐿𝐴

(𝑡 + 1)

𝑁′
𝐴𝑆

(𝑡 + 1)

𝑁′
𝐴𝐹

(𝑡 + 1)

𝑁′
𝑂𝐶

(𝑡 + 1)]
 
 
 
 
 
 

− [𝑀]
6𝑥6
𝑇

[
 
 
 
 
 
 
𝑁′

𝐸𝑈
(𝑡 + 1)

𝑁′
𝑁𝐴

(𝑡 + 1)

𝑁′
𝐿𝐴

(𝑡 + 1)

𝑁′
𝐴𝑆

(𝑡 + 1)

𝑁′
𝐴𝐹

(𝑡 + 1)

𝑁′
𝑂𝐶

(𝑡 + 1)]
 
 
 
 
 
 

, 

where [𝑀]6𝑥6 is a matrix comprising the dispersal rates (𝑚𝑖𝑗) of individuals from region 

𝑗 to region 𝑖. The dispersal rates, alongside with other parameters, are shown in Table 2 

and the rationale for estimating them are presented in section 4.3 (Parameterizing the 

model and initial conditions). 

Table 1. Definition of the model variables. 

Variable Symbol Description 

Number of infected 

individuals in region i at time 

t 

𝐼𝑖(𝑡) Assessment endpoint described as minimum, average and 

maximum values, with a 95% confidence interval 

Region-specific infection 

rate 

𝛽(𝑡)𝑖 Number of expected new cases of infection caused by one 

infected person in each region i per week (see Equation 1) 

Region-specific standard 

deviation of the frequency of 

infection  

𝜎𝑖 Standard deviation of the infection rate 



Variable Symbol Description 

Scenario-specific exposure 

index 

Κk 

Portion of the susceptible population actually exposed to the 

virus in each scenario k 

Region-specific susceptible 

population 

𝑆𝑖 Number of individuals that are not infected with COVID-19 

per region and may become infected 

Region-specific fatality rate  𝛼2
𝑖 , 𝛼5

𝑖  Expected proportion of individuals that die because of the 

infection per region, daily, for young (𝑠 = 2) and elderly (𝑠 =

5) 

  



Table 2. Definition of the model parameters. 

Parameter Symbol Assumptions (Data Source or Rationale) 𝜇  𝜎 

Age-specific 

exposure 

𝑐𝑠𝑢 

The probability of the virus being transmitted 

among young is higher than among elderly 

(transmission from state u to state s) (More 

details on Exposure assessment section). 

{

𝑐22 = 1
𝑐25 = 𝑐52 = 0.5

𝑐55 = 0.25
   

Time to recover 

𝑇𝑟𝑒𝑐 

Most individuals take two weeks to recover 

(LAN et al., 2020). 

14 days  

Permanence rate  

in the susceptible 

stage  

{
𝑎11

𝑎44
 

The proportion of infected is very little, so there 

is a slight decrease in the susceptible population 

as more people get infected (educated guess). 

0.99 0.01 

Stage-specific 

infection rates 

{

𝑎22
𝑖 (𝑡)

𝑎55
𝑖 (𝑡)

𝑎52
𝑖 (𝑡)

 

Directly proportional to the infection rate and 

corrected by the age-specific exposure. More 

details on Frequency assessment section (Note 

that (𝑎52
𝑖 (𝑡) = 𝑎25

𝑖 (𝑡)) 

{

𝑐22(𝛽
𝑖 − 1) + 1

𝑐55(𝛽
𝑖 − 1) + 1

𝑐25(𝛽
𝑖 − 1) + 1

 {

𝑐22𝜎
𝑖

𝑐55𝜎
𝑖

𝑐25𝜎
𝑖

 

Recovery rate  

{
𝑎32

𝑎65
 

More details on Frequency assessment section; 

𝜔𝑟𝑒𝑐 = 1 𝑇𝑟𝑒𝑐⁄  (LAN et al., 2020). 

{
𝜔𝑟𝑒𝑐(1 − 𝛼2)
𝜔𝑟𝑒𝑐(1 − 𝛼5)

;  

Permanence rate 

in the recovered 

stage 

{
𝑎33

𝑎66
 

The probability of a recovered individual being 

re-infected is zero (LAN et al., 2020). 1.0  

Dispersal rate of 

individuals among 

regions 

𝑚𝑖𝑗 

More details on Parameterizing the model and 

Initial conditions section 0.3 ∙ exp(−𝐷𝑖𝑗
0.8)  

Threshold for 

explosion 𝐼𝑒𝑥𝑝 

Explosion threshold (new infections since the 

initial time-step)(MIN. DA SAUDE, 2020;  

WORLDOMETERS, 2020) 

1,715,900  



2.3 QMRA methodology 

The model presented was used to conduct a QMRA for COVID-19 by following 

the same general steps proposed by (Duarte et al., 2019): (i) characterize the problem; (ii) 

describe the scenarios (SCNs); (iii) parameterize the model and initial conditions; (iv) 

assess frequency; (v) assess exposure; and (vi) quantify and categorize the risks. Each of 

these steps generates a specific result of the QMRA and, then, the Results section is 

structured in this order. This methodology has already been applied to run a QMRA for 

schistosomiasis disease (Duarte et al., 2014). 

RAMAS Metapop v.6.0 software (Akçakaya and Root, 2013) was adopted for 

running the simulations with 10,000 replications. This software is not itself a model, but 

a computational tool for constructing a metapopulation approach and running 

probabilistic simulation via the Monte Carlo method. We share all the model files in 

RAMAS format (Siqueira et al., 2020) . 

3 RESULTS 

3.1 Characterizing the problem 

We aim at assessing quantitatively the risks of SARS-CoV-2 in order to provide 

health managers in Brazil with useful information about the dynamics of the disease under 

several control strategies. To ensure that the results of this study would meet managers’ 

needs, we chose as assessment endpoints: (i) the number of infected people; (ii) and the 

number of deaths. Moreover, we provide results as PDFs for those endpoints over time, 

with an average value and a confidence interval (CI).  

This QMRA is intended to be conservative in the sense that it does not 

underestimate risks. Then, whenever different sources provided different parameters 



estimates for the PDF that governs a transition rate, 𝑎𝑠𝑢, then we considered the most 

conservative ones. More specifically, the outputs of this QMRA are as follows: (i) 

prediction of the infected subpopulation over time for each region and, then, for Brazil 

(metapopulation) over 90 days; (ii) prediction of the cumulative number of deaths in 

Brazil over 90 days; (iii) risk curves of explosion; (iv) time to explosion; (v) risk 

categorization; and a (vi) comparison of these results for all scenarios defined in the next 

section.  

Data regarding the number of infected people for each day, from Mar 28th 2020 to 

Jun 2nd 2020, for each FU, was gathered from the public database managed by the (Min. 

da Saude, 2020) BHM, and then grouped into regions. The processed data (grouped by 

regions) are available in Appendix, Table A1.  

3.2 Description of scenarios 

It is quite intricate to predict/assess all the potential events (e.g. meteorological 

and environmental conditions, numerous control strategies, various novel medical tools, 

changes in hygiene and cleaning culture, transportation restrictions in all modes, and 

events like virus mutation) that might occur in the future and influence SARS-CoV-2 

transmission. Thus, our model does not aim to be precisely predictive, only descriptive.  

In this context, we defined five SCNs in Table 3. SCN-1 is the benchmark, while 

SCN-0, SCN-2, SCN-3, SCN-4 and SCN-5 represent the isolated application of each of 

the most common containment strategies under discussion. This allows us to track which 

strategies are the most effective in terms of reducing infections, deaths and risk of 

explosion when compared to SCN-1. Lastly, SCN-6 is the integrated strategy SCN-

3+SCN-4. 

 



Table 3. Description of scenarios 

Scenario Description 

SCN-0 (stay at home) Similar to what had been done from March 28th to June 21st, i.e.: 

business restricted to only the essential (e.g., grocery stores, 

drugstores), social isolation and flight restrictions; wearing of masks: 

mandatory for everyone out of home, but there are great levels of 

indiscretion by population, since there are no penalties well defined by 

law and police oversight is almost nil. 

SCN-1 (business as usual) Business as usual (as before COVID-19); no flight restriction; Ceteris 

paribus SCN-1 SCN-0. 

SCN-2 (flight restriction) 100% national touristic flights canceled; Ceteris paribus SCN-1. 

SCN-3 (gradual resumption of 

business) 

Gradual resumption of non-essential business in 5 steps (30%, 47.5%, 

65%, 82.5% and finally 100% of the business as usual), during the next 

15, 30, 45, 60 and 75 days respectively); Ceteris paribus SCN-1. 

SCN-4 (mandatory wearing of 

masks) 

Mandatory wearing of surgical masks (Leung et al., 2020), with 

penalties well defined by federal law and intensive police oversight; 

Ceteris paribus SCN-1. 

SCN-5 (vertical isolation) Only the young in the business as usual, while the elderlies stay at 

home; Ceteris paribus SCN-1. 

SCN-6 (integrated strategy) SCN-3 and SCN-4 applied together. 

 

3.3 Parameterizing the model and Initial Conditions 

Table 1 and Table 2 summarized the variables, parameters and initial conditions 

of the model. The daily infection rate and fatality rate per age class can be estimated from 

data made available by the BHM (Min. da Saude, 2020); the mean incubation and 

transmission period (Lauer et al., 2020); the time taken to recover (Lauer et al., 2020); 

and the proportion of the young and elderly infected (IBGE, 2020).  



However, there is still a lack of scientific information, due to the unprecedented 

characteristic of the disease. Thus, we estimated two parameters of the model via 

conservative educated opinion of the authors: the permanence rate in state 2 (young 

susceptible); and the permanence rate in state 4 (elderly susceptible) (see Table 2 for the 

rationale and assumptions regarding these parameters).  

Some parameters were estimated using a mean value and others a mean and 

standard deviation (SD) (μ and σ columns in Table 2 respectively). To make the latter 

stochastic, we consider that they follow a Normal distribution. One can make good use 

of a Gaussian approach in the vital rates of biological models because there is a reasonable 

reason for random values not to be too far away from average, i.e. there are biological 

limitations preventing very large deviations and natural forces from equilibrium that bring 

vital rates back to their average values. For probabilistic simulation, RAMAS converts 

the parameters of a Normal distribution into the corresponding Lognormal counterpart, 

which avoids bias resulting from truncation because all parameters are greater than zero. 

We model the migration rates among regions as a function of the distance between 

them, i.e. the migration rate between regions i and j is defined as: 

𝑚𝑖𝑗 = 𝑎 ∙ exp (
−𝐷𝑖𝑗

𝑐

𝑏
)    (Equation 2) 

where 𝑎, 𝑏, 𝑐 are constants, and 𝐷𝑖𝑗 is the distance between i and j. This implies that, the 

farther two regions are, the lower the migration rates between them. Note that the results 

of the function are symmetrical, i.e. 𝑚𝑖𝑗 = 𝑚𝑗𝑖. This parameter will mainly influence 

the scenarios where flights are restricted (SCN-0 and SCN-2) and it is expected that 

such restrictions will reduce the final number of infected population. However, we 

consider the beneficial effect of such restrictions from a macro point-of-view only, that 

is, an infected person in region i will not carry the virus to a region j. We do not 



consider the beneficial effect that flight restrictions would cause in reducing the 

transmission inside airplanes and airports (micro point of view), where we would need 

to understand the dynamics of the transmission inside crowded and closed places, 

something that is out of the scope of this paper.  

Although the current proportion of infected individuals is very low (around 1%), 

we estimate the initial number of susceptible individuals by subtracting the number of 

infected individuals for each region and age group from the total population.  

 

3.4 Frequency assessment 

When exposed to infected individuals, a susceptible individual may get infected, 

in accordance with an infection rate. The daily infection rate, 𝛽𝑖, can be estimated by 

processing the data on the daily number of confirmed cases in each state provided by 

BHM (Min. da Saude, 2020); see Table A1 (Appendix). To that end, we grouped states 

into regions, and calculated the infection rate in each region by dividing the number of 

accumulated infections in 𝑡 + 1 by the number of infections in 𝑡. From this sample of 

values, we computed the mean (μ) and SD (σ) in each region and checked if there were 

outliers outside a 99.7% CI (𝜇 ∓ 3𝜎). If there were outliers, we calculated 𝜇 and 𝜎 and 

checked for outliers again. We repeated this process for each region until there were no 

more outliers in the sample. From the final sample of each region, we estimated the mean, 

SD, and maximum (𝛽𝑚𝑎𝑥
𝑖 ) values of 𝛽𝑖 (see Table 4). 



Table 4. Daily infection rate (mean and standard deviation) for each region. 

 
Infection rate 

Subpopulation Mean Maximum SD 

North 1.0634 1.1575 0.0400 

Northeast 1.0656 1.1772 0.0404 

Central-west 1.0580 1.1151 0.0200 

Southeast 1.0452 1.1117 0.0235 

South 1.0446 1.1056 0.0215 

After an individual gets infected, (s)he may either die or recover. We estimated 

the fatality rate (𝛼𝑖) (i.e. the rate at which infected individuals may die) per day, dividing 

the number of accumulated deaths by the number of accumulated infections at a time t. 

Similarly to the infection rate, we calculated the mean and SD of the fatality rate in each 

region and removed the outliers. To distinguish the fatality rates of young (𝛼2
𝑖 ) and 

elderly (𝛼5
𝑖 ), it was assumed that 71.4% of the deaths occurred to elderlies, and 29.6%, 

to young (Poder360, 2020). It can be expressed as: 𝛼2
𝑖 = 0.296 ∙ 𝛼𝑖;  𝛼5

𝑖 = 0.714 ∙ 𝛼𝑖. 

The recovery rates (𝑎32, 𝑎65) (i.e. the daily transition rate from infected to 

recovered) can be estimated based on the incubation and transmission period of those 

who develop symptoms. A study suggested that transmission of SARS-CoV-2 also occurs 

during the incubation period (Mellan et al., 2020). Thus, we considered the recovery time 

as the sum of incubation and transmission intervals. According to (Lauer et al., 2020), 

under conservative assumptions, recovery lasts 14 days. Thus, after 2 weeks, it is highly 

unlikely that an infected individual would still be in the transmission period. This is also 



in accordance with, and well supported by, the recommendation of the U.S. Centers for 

Disease Control and Prevention for the period of active monitoring of infected people (14 

days = 2 weeks) (WhiteHouse, 2020). Thus, we estimated the mean recovery rate as 

𝛼32
𝑖 = (

1

14 𝑑𝑎𝑦𝑠
) ∗ (1 − 𝛼2

𝑖 ), for the young individuals (note that the same can be done for 

the elderly, by using 𝛼65
𝑖  and 𝛼5

𝑖 ).  

3.5 Exposure assessment 

Human exposure to SARS-CoV-2 mostly occurs when people go out of home for 

business. Since March 28th (G1, 2020) until June 21st (AgenciaBrasil, 2020) all the 

Brazilian states had only the essential business running and most people have stayed at 

home; we call this as SAH strategy (SCN-0). Obviously, this strategy is not sufficient to 

reduce exposure to zero, mainly because the essential business have been still working 

and/or because part of the population did not take the strategy seriously. Thus, from Mar 

28th to Jun 21st, the exposed susceptible population has been reduced to some percentage 

(greater than zero) of the total susceptible population due to this SAH strategy. 

Henceforward, when we say that there is 𝛫𝑘 of exposure index in a scenario k, it means 

that 𝛫𝑘 of the susceptible population is exposed to the virus. In the BAU scenario (SCN-

1), the exposure was set to be 100% because it is our benchmark (𝛫1 = 100%). 

To determine this percentage for SCN-0, we proceeded as follows. First, we have 

almost every parameter needed to simulate SCN-0, except for the exposure index (i.e. 

portion of the susceptible population exposed to the virus).  

The SCN-0 model was calibrated through trial-and-error problem-solving. The 

simulation was repeated over various attempts until the real values of infected people 

were all within the predicted 99.3% confidence interval (i.e. the region bounded by the 



boxplots in Fig 2A). In this way, we obtained a 𝛫0 = 12.5% in a SAH scenario. Note that 

the registered deaths are also within the boundaries of the simulated results (Fig. 2B). 

 

Figure 2. Calibration procedure of the model for a SAH scenario for the period June 7-21 for infections 

(A) and deaths (B). The line represents the registered values and the boxplots contain the simulation 

results. 

 

SCN-2 considers BAU as in SCN-1 and, thus, 𝛫2 = 𝛫1 = 100%. For SCN-3, 

which represents a gradual return to BAU, we considered that initially, 𝛫3 = 12.5%, and 

then this percentage increases by 17.5% every 15 days, until reaching the BAU scenario, 

𝛫3 = 100%. 

Finally, SCN-4 considers wearing of masks by all the population during business 

time. The exposure index was based on a study that evaluated the effectiveness of Surgical 

Face Masks (SFM) in reducing the detection of coronaviruses, influenza viruses and 

rhinoviruses in exhaled breath and coughs of children and adults with acute respiratory 

illness (Leung et al., 2020). The results showed that SFMs could prevent transmission of 

these viruses from symptomatic individuals. They estimated the efficacy of SFMs in 

reducing respiratory virus frequency of detection and viral shedding in respiratory 

droplets (aerodynamic diameter > 5 µm) and aerosols (aerodynamic diameter ≤ 5 µm) of 



symptomatic individuals. We treated the reduction in the frequency of detection as a 

measure of reduction in exposure. For coronavirus, in a sample of 17 participants, wearing 

SFM reduced exposure to 0.09 for droplets particles and to 0.04 for aerosols. There is still 

no consensus in the literature on how much more pronounced is, at population-level, the 

transmission of SARS-CoV-2 through droplets as compared to transmission through 

aerosols. We treat both modes of transmission with even weight and use the arithmetic 

mean to estimate the average reduction in the exposure by the wearing of SFMs. The 

arithmetic mean would indicate that, for coronaviruses, the wearing of SFM reduces 

exposure to 6.5%, but the sample of participants infected by human coronavirus (n = 17) 

was too small. Thus, for a conservative approach, we used results from the total sample 

(n = 123) of individuals infected with at least one of the aforementioned respiratory 

viruses, which indicates a 20% exposure reduction for influenza and 46% for rhino. Thus, 

we assumed the average exposure index between over the three types of virus, resulting 

in 𝛫4 = 24%. The results of the exposure assessment can be seen in Fig. 3. 

 

Figure 3. Summary of exposure assessment for each SCN. 



We consider young people spend more time on business, having a higher 

probability of infecting another individual or being infected. We assumed that, in a BAU 

scenario, young people do business full time (8 hours per day), while elderly only half-

time (4 hours per day). Thus, the infection rates are age-specific, i.e. the probability of a 

young person infects another young is two times higher than an elderly infecting another 

elderly (see Table 2). 

3.6 Quantification and categorization of risks 

In this section, the main risk results of each scenario are presented and compared. 

Fig 4 illustrates the efficiency of each strategy and should be compared against the 

benchmark SCN-1 in terms of: (A) projection of the accumulated number of infected; (B) 

projection of the accumulated number of deaths; and (C) Cumulative Distribution 

Function (CDF) for the time to explosion, and the median time for the explosion is 

highlighted in brackets. 



 

Figure 4. (A) Number of infected individuals in Brazil over time; (B) Death toll in Brazil over time; (C) 

CDF of the time to explosion (the median time to explosion is the value between parenthesis). (CR = 

Critical Risk; HI = High Risk; CO = Considerable Risk; NE = Negligible Risk). 

In Fig. 4A and 4B, the results for each scenario are presented within a 68.3% CI 

(𝜇 ∓ 𝜎), where the lines represent the expected values and the vertical bars the CI. 



Regarding the risk curves (Fig 4C), each point can be interpreted as “there is a Y% 

probability that the number of new infections will reach the explosion threshold by time-

step X”. Based on these results, one can categorize the risks associated to each scenario: 

Negligible (NE) for SCN-0, High (HI) for SCN-3 and Critical (CR) for SCN-1, SCN-2, 

SCN-4 and SCN-5. Note that only the SCN-0 has a 0% risk of explosion. 

Table 4 summarizes the results. The main outputs of the model are in the table 

columns, while the lines represent the comparison of each scenario against the benchmark 

(in the first line). Values with + or – symbol are interpreted as an efficiency index of each 

strategy in reducing expected number of infected people and death toll, and increasing 

the median time to explosion (i.e. the time at which the explosion risk is 50%). A zero 

value means that there is no difference when compared to the benchmark. The scenarios 

are ranked according to the risk categories, from worst (CR) to best (NE). 

Table 5. Summary of the results for each SCN. 

 

Expected 

Infected 

Population 

(million)  

Expected 

Death Toll 

(thousands) 

Median Time to 

Explosion (days) 

Risk 

Category 

Benchmark: SCN-1 

(business as usual) 

17.5 460 7.1 CR 

SCN-5 (vertical 

isolation) 

0 -165 0 CR 

SCN-2 (flight 

restriction) 

0 0 0 CR 



 

Expected 

Infected 

Population 

(million)  

Expected 

Death Toll 

(thousands) 

Median Time to 

Explosion (days) 

Risk 

Category 

SCN-3 (gradual 

resumption to business 

as usual) 

-1.8 -50 +16.1 CR 

SCN-4 (mandatory use 

of masks) 

-13.3 -350 +11.6 HI 

SCN-6 (integrated 

strategy) 

-13.5 -355 +59.6 CO 

SCN-0 (stay at home) 

-15.1 -400 

Explosion does 

not occur 

NE 

Note: CR = Critical Risk; HI = High Risk; CO = Considerable Risk; NE = Negligible Risk 

3.7  Answers to policymakers 

We here summarize the results by answering the questions raised in the 

Introduction section. The answers are always given in comparison to the benchmark, i.e. 

BAU strategy (SCN-1). 

3.7.1 How many lives can we save and how many infections can we reduce until 

October 10th if we decide to implement a certain containment strategy? 

Table 5 (Expected Death Toll (thousands) and Expected Infected Population 

(million) columns) shows for each containment strategy, respectively, the reduction 

(represented by a minus sign) in deaths and infections. 



3.7.2 What is the probability of having a collapse in the Brazilian health system by 

October 10th for each containment scenario?  

If a SAH strategy was sustained, a collapse will probably never occur, alongside 

with a great reduction in infections and deaths. For all other scenarios, it will eventually 

occur at some time during the next 90 days (Figure 4(C)). This does not mean that the 

only solution is to maintain the SAH strategy, but that, should another strategy is applied, 

policymakers have a given deadline (see Median Time to Explosion column in Table 5) 

to invest in more ICUs in order to avoid a collapse.  

3.7.3 Would a gradual economic resumption plan be effective to reduce the risk of 

collapse?  

If that strategy (SCN-3) is applied alone, the final number of infected and deaths 

are almost the same as a BAU strategy and the risk of a collapse/explosion is still CR 

(Figure 4). This strategy is only effective to defer the explosion in 15 days (Table 5). 

3.7.4 Is vertical isolation effective? 

Yes for deaths and no for infections. Vertical isolation is statistically identical to 

a BAU strategy in terms of infections and risk to the health system, although, in terms of 

deaths, it causes a significant reduction (i.e. expected 165,000 less deaths) (Table 5). This 

strategy may also cause side effects on the elderly population due to the home 

confinement for 90 days (e.g. mental disorders, muscle atrophy, neuromuscular junction 

damage, fibre denervation, insulin resistance, decreased aerobic capacity, fat deposition, 

low-grade systemic inflammation). The evaluation of side effects is out of the scope of 

this paper. 

3.7.5 What about BAU with the wearing of masks? 

This strategy defers the explosion in 12 days and also causes a substantial 

reduction in both infections and deaths (Table 5). Risk to the health system is reduced 

from CR to HI. The high risk is plausible because the wearing of SFMs reduces the 

exposure index of people from 100% to 24%, which is still sufficient for the virus to 



continue to spread at a considerable rate and cause more than 20% probability of 

explosion occurring within 28 days. The reduction in the exposure index was estimated 

based on data from experiments that identified human coronaviruses, influenza viruses 

and rhinoviruses in the exhaled breath and coughs of children and adults with and without 

SFM. 

3.7.6 Which regions are most at risk in the future? Which ones deserve the most effort 

to control the disease? What is the order of prioritization? 

For a BAU scenario, we have this ranking of regions according to the proportion 

of infected population (i.e.: 
𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑟𝑒𝑔𝑖𝑜𝑛 𝑖

𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑟𝑒𝑔𝑖𝑜𝑛 𝑖
× 100%) (Figure 5): NE 

(11.39%); N (10.42%), CW (10.41%), S (7.54%) and SE (5.72%). This indicates that the 

NE, N and CW regions should be prioritized in the distribution of financial resources, 

especially ICUs. This rank is plausible because data (Appendix, Table A1) shows that 

NE, N and CW have the greatest infection rates, thus, although they have a low proportion 

of infected people at the beginning of the simulation, this figure tends to grow faster and 

surpasses the S and SE regions. 



 

Figure 5. Boxplots for the proportion of infected per region at the end of the simulation in a business as 

usual scenario (SCN-1). 

3.7.7 What is the risk category for an integrated strategy where wearing of masks is 

mandatory for everyone out of home together with a gradual resumption of the 

economy? 

The integrated strategy SCN-6 (gradual resumption of economy together with 

mandatory wearing of masks) reduces risk to CO category and expected number of deaths 

by 355 thousand (Table 5), indicating that this could be somehow effective to satisfy the 

country’s economic needs without posing the health system at high risk. 

3.7.8 How many new IUCs would it be necessary to invest in, alongside with the 

integrated strategy SCN-6, to reduce the risk to negligible levels? 

The explosion threshold depends on the number of available ICUs (see Risk of 

explosion and categorization section). Thus, in order to explore the sensitivity of risk 

results to ICU capacity, we simulated SCN-6 with increasing numbers of ICUs (Figure 

6). We concluded that it is necessary to invest in approximately from 16,000 to 26,000 

more ICUs and the integrated strategy (SCN-6) to reduce risks to negligible levels. 



 

Figure 6. Sensitivity analysis of the risk explosion in 90 days for SCN-6 (gradual resumption of economy 

together with mandatory wearing of masks) as a function of ICU capacity. 

 

4 DISCUSSION 

By the time this paper is published, results may be obsolete. Thus, we consider 

the model structure in Section 2 and methodology in Section 3 are our greatest 

contributions. As new information arises, parameters can be easily updated to simulate 

scenarios for future time periods. Moreover, with a few tweaks, the model structure and 

methodology can be used for upcoming situations other than COVID-19. Thus, in this 

section, we firstly discuss the advantages of using the model and methodology and, then, 

the limitations.  

4.1 Advantages 

Our model proved to be a useful tool to support public management decisions 

regarding the prioritization and importance of the most common COVID-19 containment 

measures, considering all the uncertainty around the data available. Although the data are 

still very imprecise, our approach was able to propagate the uncertainty in the results and 

give answers in terms of risk.  



DD was modeled in such a way that the infection rate, 𝛽𝑖(𝑡), was assumed to vary 

as a function of the infected population according to a Contest type DD model. Without 

this assumption, the infection rates would be constant over time, overestimating the risks. 

This way is more realistic, grounded on the fact that, the more infected people, the less 

susceptible ones and it is more difficult for the virus to spread. DD Contest-type has been 

applied to ecological models of fishes, reptiles, birds and mammals (H Resit Akçakaya et 

al., 2004). To our best knowledge, we were the first to apply DD Contest-type in 

epidemiological modelling and it has been shown that this innovative approach can bring 

more realistic results.  

It is important to state that our model cannot make precise predictions for what 

will exactly happen in the future; any model that tries to be precisely predictive will likely 

miss some information, because decisions are made every time, changing the future. Our 

model is only descriptive, with the purpose of only tracking the efficiency of each single 

control measure and, also, of an integrated strategy which seems to be viable for the 

Brazilian government to implement: gradual resumption of economy together with 

mandatory wearing of masks during the business time. 

Finally, we proposed a set of criteria to categorize the computed risks of the 

pandemic to the health system, which could be useful not only for COVID-19, but also 

as a reference for categorizing risks to the health system of any country (mostly the ones 

where ICU beds are the most critical bottleneck). This categorization is useful to 

communicate risks to the general public and politicians, who are mostly unfamiliar with 

probabilistic language. The rationale behind the risk categorization was explained in the 

QMRA methodology section, so readers must ensure that they fully understand it in order 

to be secure that they can correctly interpret the results of the risk category. 



4.2 Limitations 

We have not considered the influence of containment strategies to the Brazilian 

economy, since business restrictions have caused the income of many people to reduce 

dramatically. We quantify and categorize only risks to the health system. Our model also 

does not assess the cost of the control measures, although it provides quantitative and 

robust results that can be used to feed a cost-efficiency analysis. 

The exposure estimates of wearing SFMs (SCN-4) are very uncertain. Because 

the experiment was performed with a small sample, and we had to include in our estimates 

the results of experiments with similar but not identical viruses (i.e. influenza virus and 

rhinovirus) that have different penetrability through SFMs. There are also different types 

of masks (e.g. N95, cloth), which are not considered in our estimates, and can be more or 

less effective than the SFMs deemed in the study. Also, we assume that the face mask 

plan includes mandatory wear during business time with penalties to individuals and 

companies well defined by law and intense police oversight, in such a way that everyone 

follows the law and wears a SFM during all the time out of home. The portion of the 

population that would not take the law seriously is very difficult to estimate and was not 

considered in this scenario. 

We model the beneficial effect of national flight restrictions only at a macro point 

of view, i.e., it prevents the migration of infected people from one region to another. We 

have not modeled the beneficial effect of preventing the transmission of COVID-19 inside 

airports and airplanes. 

Currently, our model was built and simulated using a paid software called 

RAMAS (H R Akçakaya & Root, 2013). Although we share all the model files (Siqueira 



et al., 2020), it is only useful for those who have the RAMAS license. We acknowledge 

this impairs the ease of reproducing the results.  

Given these limitations, proposals for future studies include: to conduct a risk 

assessment of containment strategies to the Brazilian economy; to perform a cost-

effectiveness analysis for the control measures; to investigate new studies related to the 

effectiveness of masks and update the parameter Κ4; to build and simulate the model in 

an open scriptable software, then it can be easily reproduced by others. Another proposal 

for a future study is to evaluate the effectiveness of alternative vaccine types and mass 

vaccination programs. 

5 CONCLUSIONS 

We have quantified, assessed, categorized and ranked the risks related to different 

control scenarios that seem plausible for the short-term, and provided reliable results so 

that the BHM can make informed decisions. The results indicated that SCN-6, which 

includes the gradual resumption of economy in five steps together with mandatory 

wearing of SFMs during business time with well-defined penalties and intensive police 

oversight, is expected to lead to 5.1 million infected and 135 thousand deaths by mid 

October 2020. When compared to a business as usual or do-nothing plan, this represents 

less 12.4 million and 320 thousands infected people and deaths respectively. In SCN-6, 

the risk to the health system is considerable (i.e. >10% probability of explosion within 90 

days), which indicates that this plan could satisfy the country’s economic needs but poses 

the health system at a risk that is not negligible. Thus, at best, this plan would also include 

investment in more ICUs. We estimated that SCN-6 together with at least 16,000 

additional ICUs reduces the risks to negligible levels. 



The model is probabilistic in nature, incorporating in the results the inherent 

uncertainty in COVID-19 dynamics, making this its main advantage. On the other hand, 

the main limitation is the uncertainty in some estimates of the reduced exposure due to 

the wearing of masks, which is a consequence of the lack of knowledge due to the 

unprecedent nature of the COVID-19 (published experiments have small samples). This 

is also a limitation of all other models in the literature that have dealt with describing the 

dynamics of the pandemic. Nevertheless, our model is able to inform managers about the 

uncertainty in the results, unlike other approaches, so decision makers can be aware of 

the risks of their decisions. 

Our model did not attempt to be a precise forecasting tool, but rather a descriptive 

one. The COVID-19 dynamics is, then, described under predefined scenarios (different 

conditions of business restriction, flight restriction, wearing of masks), in order to 

evaluate the impact of such measures and provide meaningful conclusions that can be 

used to aid public health decisions. Therefore, the model is significant for decisions taken 

under uncertainty, but it is very important that due care is taken on how to interpret the 

results. 
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